Hypothetical learning trajectory of linear equation systems with three variables: The context of typical snacks riau islands

  • Asmaul Husna Universitas Riau Kepulauan
  • Zulkardi Zulkardi Universitas Sriwijaya
  • Ratu Ilma Indra Putri Universitas Sriwijaya
  • Ely Susanti Universitas Sriwijaya
  • Duano Sapta Nusantara Universitas Sriwijaya
Abstract views: 207 , PDF downloads: 117
Keywords: Hyphotetical Learning Trajectory, Typical snacks of Riau Islands, ; Indonesian Realistic Mathematics Education, Linear Equation System of Three Variables

Abstract

This study aims to design a learning trajectory for the Three-Variable Linear Equation System (SPLTV) by applying Indonesian Realistic Mathematics Education (PMRI) with the context of typical Riau Islands snacks. The research methodology involved three stages, namely preparing for the experiment, design experiment, and retrospective analysis. Data were collected through documentation and interviews, then analyzed by data reduction, data presentation, and conclusion drawing. The research subjects were 15 3rd semester students of the Mathematics Education Study Program at Riau Islands University. The results of the research are in the form of a hypothetical learning trajectory design in learning SPLTV with the context of typical snacks of the Riau Islands. The learning trajectory begins by linking students' learning experiences with the concepts to be presented. During learning, students apply the SPLTV concept to contextual problems. In the end, they are able to apply the SPLTV concept in different contexts, demonstrating an understanding of the material. This contextualized learning experience plays an important role in improving students' understanding of SPLTV.

References

Akker, Jan van den et al. 2013. Educational Design Research - Part A: An Introduction. Enchede: SLO Netherlands Institute for Curriculum Development.

Aprilia, I. S., & Awalia, N. (2020). Improving Student Learning Outcomes with the Application of Pendidikan Matematika Realistik Indonesia (PMRI). Indo-MathEdu Intellectuals Journal, 1(1), 38-49.https://doi.org/10.54373/imeij.v1i1.42

Apsoh, S., Setiawan, A., & Susanti, S. (2022). Kesulitan Belajar Matematika Dalam Menyelesaikan Soal Cerita Pada Pembelajaran Daring. JUPENJI : Jurnal Pendidikan Jompa Indonesia, 1(2), 31–41. https://doi.org/10.55784/jupenji.vol1.iss2.199

Arnellis, A., Fauzan, A., Arnawa, I. M., & Yerizon, Y. (2020). The Effect of Realistic Mathematics Education Approach Oriented Higher Order Thinking Skills to Achievements’ Calculus. Journal of Physics: Conference Series, 1554, 012033

Edwar, Putri, R. I. I., Zulkardi, & Darmawijoyo. (2023). Developing a workshop model for high school mathematics teachers constructing HOTS questions through the Pendidikan Matematika Realistik Indonesia approach. Journal on Mathematics Education, 14(4), 603-626. http://doi.org/10.22342/jme.v14i4.pp603-626 .

Ekawati, R., & Kohar, A. W. (2016). Innovative teacher professional development within PMRI in Indonesia. International Journal of Innovation in Science and Mathematics Education, 24(5).

Fauziah, A., & Putri, R. I. I. (2017). Primary school student teachers’ perception to Pendidikan Matematika Realistik Indonesia (PMRI) instruction. In Journal of Physics: Conference Series (Vol. 943, No. 1, p. 012044). IOP Publishing.

Gee, E. (2019). Kemampuan Pemecahan Masalah Matematika Melalui Alur Belajar Berbasis Realistic Mathematics Education (RME). Jurnal Education and Development, 7(3), 269. https://doi.org/10.37081/ed.v7i3.1267

Lestary, D & Sani, A. (2018). The Effectiveness of Using Natural Approach to Improve Students’ Interaction Ability at The Second Grade of SMAN 4 Pinrang. Inspiring: English Education Journal, 1(2), 87-102. https://doi.org/10.35905/inspiring.v1i2.842.

Lusiana, R. (2017). Profil Berpikir Kreatif Mahasiswa dalam Memecahkan Masalah Sistem Persamaan Linier Berbasis Kontekstual Ditinjau dari Kecerdasan Matematika Logis. JIPM (Jurnal Ilmiah Pendidikan Matematika), 5(2), 100-108.http://doi.org/10.25273/jipm.v5i2.1173

Meitrilova, A., & Putri, R. I. I. (2020, February). Learning design using PMRI to teach central tendency materials. In Journal of Physics: Conference Series (Vol. 1470, No. 1, p. 012086). IOP Publishing.

Meryansumayeka, Z., Putri, R. I. I., & Hiltrimartin, C. (2022). Designing geometrical learning activities assisted with ICT media for supporting students’ higher order thinking skills. Journal on Mathematics Education, 13(1), 135-148.

Nenohai, J.M.H., et al (2024). Preservice mathematics teacher knowledge of higher order thinking skills. Journal of Education and Learning (EduLearn),18(2),588-597. DOI: 10.11591/edulearn.v18i2.21184.

Ratuanik, M., Wermpinan, W., Bacory, Z., & Batkunde, Y. (2021). Pemahaman Mahasiswa Baru Program Studi Pendidikan Matematika STKIP Saumlaki Tentang Lingkaran Setelah Penerapan PMRI. Jurnal Cendekia : Jurnal Pendidikan Matematika, 5(2), 1322-1331. https://doi.org/10.31004/cendekia.v5i2.493

Rokhmawati, L. N. (2023). Implementasi Hypothetical Learning Trajectory Kaidah Pencacahan Berbasis Realistic Mathematics Education Pada Kemampuan Penalaran Matematis (Doctoral dissertation, Universitas Siliwangi).

Sabil, H., & Winarni, S. (2013). Penerapan Pendekatan PMRI untuk Meningkatkan Kemampuan Konsep Geometri Mahasiswa PGSD Universitas Jambi. Prosiding SEMIRATA 2013, 1(1).

Samo, D. D. (2017). Kemampuan pemecahan masalah matematika mahasiswa tahun pertama dalam memecahkan masalah geometri konteks budaya. Jurnal Riset Pendidikan Matematika, 4(2), 141-152.10.21831/jrpm.v4i2.13470

Sari, A. F., & Noviartati, K. (2022). Penggunaan Konteks dalam Implementasi Pendidikan Matematika Realistik Indonesia oleh Mahasiswa. Jurnal Pendidikan Matematika: Judika Education, 5(2), 84-92.https://doi.org/10.31539/judika.v5i2.4616.

Simon, M. (2014). Hypothetical Learning Trajectories in Mathematics Education. In Encyclopedia of Mathematics Education (pp. 272–275). Springer, Dordrecht.

Suyanti, S., Rohana, R., & Fakhrudin, A. (2021). Development of indonesian realistic mathematics education-based digital module on mathematic in elementary school. JIP (Jurnal Ilmiah PGMI), 7(2), 141-149.https://doi.org/10.19109/jip.v7i2.10557

PlumX Metrics

Published
2024-05-30
How to Cite
Husna, A., Zulkardi, Z., Putri, R. I. I., Susanti, E., & Nusantara, D. S. (2024). Hypothetical learning trajectory of linear equation systems with three variables: The context of typical snacks riau islands . Jurnal Math Educator Nusantara: Wahana Publikasi Karya Tulis Ilmiah Di Bidang Pendidikan Matematika, 10(1), 12-22. https://doi.org/10.29407/jmen.v10i1.21550