Abstrak
This study aimed to analyze the reduction in malondialdehyde (MDA) after interval and continuous morning training in obese women. This study is a true experiment with a research design a Basic Time Series Design using 27 obese women aged 20-25 years, body mass index (BMI) 25-35 kg / m2, percentage body fat (PBF) above 30% and VO2max. 25-35 ml / kg / min and randomly divided into three groups, namely CON (n = 9, control without intervention), MIE (n = 9, moderate interval exercise) and MCE (n = 9, moderate continuous exercise). The intervention was carried out in the morning at 07.00-09.00 WIB. The MIE and MCE interventions were carried out for 40 minutes using a treadmill. Blood samples were taken pre-exercise, 10 minutes and 6 hours post-exercise. The MDA serum measurement used the Thiobarbituric Acid Reactive substance (TBARs) method. Data analysis techniques used post hoc ANOVA and LSD tests with Statistical Package for Social Science (SPSS) version 21. Serum MDA decreased significantly after 10 minutes and 6 hours after MIE and MCE interventions (P <0.05), but not in CON (P > 0.05). Based on the results of the study it was concluded that the MDA serum decreased after 10 minutes and 6 hours after the MIE and MCE intervention compared to CON in obese women. But the pattern of reduction in serum MDA in MCE was lower than that of MIE and CON.
Referensi
Al-Dalaen, S. & A-Qtaitat, A.I. (2014). Oxidative stress versus antioxidants. American Journal of Bioscience and Bioengineering, 2(5): 60-71.
Anggraeni, S., Setyaningrum, T. & Listiawan, M.Y. (2017). Significant Different Level of Malondialdehyde (MDA) as Oxydative Stress Marker in Severity Groups of Acne Vulgaris. Berkala Ilmu Kesehatan Kulit dan Kelamin, 29(1). pp. 36-43. http://dx.doi.org/10.20473/bikkk.V29.1.2017.36-43.
Aro, C.E.P., Guzman, J.AR., Munoz, M.E.S. & Gonzales, B.E.V. (2015). Effect High Intensity Interval Training Versus Moderat Intensity Continuous Training on The Reduction of Oxidative Stress in Type 2 Diabetic Adult Patients: CAT. Medwave, 15(7). pp. 1–13.
Arsana, I.N., Adiputra, N., Pangkahila, J.A. & Putra-Manuaba, I.B. (2013). Garcinia Mangostana L. Rind Extract and Physical Training Reduce Oxidative Stress in Wistar Rats During Maximal Physical Activity. Indonesian Journal of Biomedical Sciences, 7(2). pp. 63–68.
Astari, N. Susanto, H. & Argarini, R. (2016). Perbandingan Latihan Kontinyu Intensitas Sedang dan Latihan Interval Intensitas Tinggi terhadap Kontrol Glukosa Darah. MKB, 48(4). pp. 194–199. http://dx.doi.org/10.15395/mkb.v48n4.909.
Ayuningati, L.K., Murtiastutik, D. & Hoetomo, M. (2018). Difference Level of Malondialdehyde [MDA] in Atopic Dermatitis and Nonatopic Dermatitis Patients. Periodical of Dermatology and Venereology, 30(1). pp. 58-65. http://dx.doi.org/10.20473/bikkk.V30.1.2018.58-65.
Budi, A.R., Kardi, H. & Ari, A. (2019). Perbedaan Kadar MDA Pada Dewasa Muda Obes dan Non-Obes di Fakultas Kedokteran Universitas Andalas. Jurnal Kesehatan Andalas, 8(2). pp. 21–25.
Cabrera, M.C.G, Domenech. E. & Vina, J. (2007). Moderat Exercise is an Antioxidant: Upregulation of Antioxidant Genes by Training. Free Radical Biology & Medicine, 44(1). pp. 126–131.
Candrawati, S. (2013). Pengaruh Aktivitas Fisik terhadap Stres Oksidatif. Jurnal Mandala of Health, 6(1). pp. 454–461.
Daskalopoulou, S.S., Daskalopoulou, S.S., Cooke, A.B., Gomez, Y.H., Mutter, A.F., Filippaios, A., Mesfum, E.T. & Mantzoros, C.S. (2014). Plasma irisin levels progressively increase in response to increasing exercise workloads in young, healthy, active subjects. European Journal of Endocrinology, 171(3). pp. 343–352. https://doi.org/10.1530/EJE-14-0204.
Dias, K.A., Ingul, C.B., Tjonna, A.E., Keating, S.E., Gomersall, S.R., Follestad, T., Hosseini, M.S., Hollekim-Strand, S.M., Ro, T.B., Haram, M., Huuse, E.M., Davies, P.S.W., Cain, P.A., Leong, G.M. & Coombes, J.S. (2017). Effect of High-Intensity Interval Training on Fitness, Fat Mass and Cardiometabolic Biomarkers in Children with Obesity: A Randomised Controlled Trial. Sports Medicine, 48(3). pp. 733–746. https://doi.org/10.1007/s40279-017-0777-0.
Esgalhado, M., Stockler-Pinto, M.B., de França Cardozo, L.F.M., Costa, C., Barboza, J.E. & Mafra, D. (2015). Effect of acute intradialytic strength physical exercise on oxidative stress and inflammatory responses in hemodialysis patients. Kidney Res Clin Pract, 34. pp. 35–40. http://dx.doi.org/10.1016/j.krcp.2015.02.004.
Fakhri, S., Shakeryan, S., Alizadeh, A. & Shahryari, A. (2019). Effect of 6 Weeks of High Intensity Interval Training with Nano-curcumin Supplement on Antioxidant Defense and Lipid Peroxidation in Overweight Girls- Clinical Trial. Iriana Journal of Diabetes and Obesity, 11(2). pp. 173–180.
Fruh, S.M. (2017). Obesity, Risk factors, complications, and strategies for Sistanable Long-term Weight Management. American Association of Nurse Practitioners, 29(2017). pp. S3-S14. http://doi.org/10.1002/2327-6924.12510.
Harbuwono, D.S., Pramono, L.A., Yunir, E., & Subekti, I. (2018). Obesity and Central Obesity in Indonesia: Evidence from a National Health Survey. Medical Journal of Indonesia, 27(2). pp. 114-120. https://doi.org/10.13181/mji.v27i2.1512.
Huang, C-J., McAllister, M.J., Slusher, A.L., Webb, H.E., Mock, T. & Acevedo, E.O. (2015). Obesity-Related Oxidative Stress: the Impact of Physical Activity and Diet Manipulation. Sports Medicine–Open, 1(32). pp. 1–12. https://doi.org/10.1186/s40798-015-0031-y.
Ilyas, E.I.I., Utami, T.P., Siagian, M., Santoso, D.I.S., & Prijanti., A.R. (2017). Effect Moderate Intensity Exercise Training on Stress Oxidative Marker: Malondialdehyde and Superoxide Dismutase Acticity in Abdominal Aorta of Juvenile Rats. International Journal of Research-Granthaalayah, 5(12). pp. 99–105. https://doi.org/10.5281/zenodo.1133607.
Kapusta, A., Kuczyńska, B., & Puppel, K. (2018). Relationship between the degree of antioxidant protection and the level of malondialdehyde in high-performance Polish Holstein-Friesian cows in peak of lactation. PloS one, 13(3). https://doi.org/10.1371/journal.pone.0193512.
Kawamura, T. & Muraoka, I. (2018). Exercise Induced Oxidative Stress and The Effects of Antioxidant Intake from a Physiological Viewpoint. Antioxidants, 7(119). pp. 1-19. http://doi.org/10.3390/antiox7090119.
Lasker, S., Rahman, Md.M., Parves, F., Zamila, M., Miah, P., Nahar, K., Kabir, F., Sharmin, S.B., Subhan, N., Ahsan, G.U. & Alam, Md.A. (2019). High-fat diet-induced metabolic syndrome and oxidative stress in obese rats are ameliorated by yogurt supplementation. Scientific Reports, 9(20026). pp. 1–15. https://doi.org/10.1038/s41598-019-56538-0.
Norton, K., Norton, L. & Sadgrove, D. (2010). Position statement on physical activity and exercise intensity terminology. Journal of Science and Medicine in Sport, 13(5). pp. 496–502. https://doi.org/10.1016/j.jsams.2009.09.008.
Nuhoho, P.D., Ofori, E.K., Anane, H.A., Oppong, S.Y., Boamah, I. & Blakhurst, D. (2018). Impact of Exercise Intensity on Oxidative Stress and Selected Metabolic Markers in Young Adults in Ghana. BMC Res Notes, 11(634). pp. 1–7. http:doi.org/10.1186/s13104-018-3758-y.
Ozougwu, J. (2016). The Role of Reactive Oxygen Species and Antioxidants in Oxidative Sterss. International Journal of Research in Pharmacy and Biosciences, 3(16). Pp. 1-8.
Paravicini, T.M. & Touyz, R.M. (2008). NADPH Oxidase, Reactive Oxygen Species, and Hyperetnsion. Journal Diabetes Care, 31(2). pp. 170–180.
Park, S.Y. & Kwak, Y.S. (2016). Impact of aerobic and anaerobic exercise training on oxidative stress and antioxidant defense in athletes. Journal of Exercise Rehabilitation, 12(2). pp. 113–118. http://dx.doi.org/10.12965/jer.1632598.299.
Pingitore, A., Lima, G.P.P., Mastorchi, F., Quinones, A., Iervasi, G. & Vassalle, C. (2015). Exercise and Oxidative Stress: Potential Effect of Antioxidant Dietary Strategies in Sport. Journal Nutrition, 31. pp. 916–922.
Pons, I.B., Ryan, L. & Martinez, J.A. (2012). Oxidative stress and inflammation interactions in human obesity. J Physiol Biochem, (68). pp. 701–711.
Rambhojan, C., Bouaziz-Amar, E., Larifla, L., Deloumeaux, J., Clepier, J., Plumasseau, J., Lacorte, J-M. & Foucan, L. (2015). Ghrelin, adipokines, metabolic factors in relation with weight status in school-children and results of a 1-year lifestyle intervention program. Nutrition & Metabolism, 12(43). pp. 1-10. https://doi.org/10.1186/s12986-015-0039-9.
Riskesdas. (2018). Laporan Nasional Riset Kesehatan Dasar. Jakarta: Kemenkes RI. Available at: http://www.kesmas.kemkes.go.id.
Stover S. (2005). High Intensity Sprint Training Reduces Lipid Peroxidation in Fast Twitch Skeletal Muscle. Journal of Exercise Physiology, 8(6). pp. 18–25.
Sinaga, F.A. (2016). Stress Oksidatif Dan Status Antioksidan Pada Aktivitas Fisik Maksimal. Jurnal Generasi Kampus, 9(2). pp. 176-189.
Susantiningsih, T. (2015). Obesitas dan Stress Oksidatif. JuKe Unila, 5(9). pp. 89–93.
Tsuchiya, Y., Ando, D., Takamatsu, K. & Goto, K. (2015). Resistance exercise induces a greater irisin response than endurance exercise. Metabolism: Clinical and Experimental, 64(9). pp. 1042–1050. https://doi.org/10.1016/j.metabol.2015.05.010.
Vincent, HK. & Taylor. (2006). Biomarkers and Potential Mechanism of Obesity Induced Oxidant Stress in Humans. International Hournal of Obesity, (30). pp. 400–418.
Wellman, K.F. & Bloomer, R.J. (2009). Acute Exercise and Oxidative Stress: a 30 year history. MioMed Central, 8(1). pp. 1-25.
Wewege, M., van den Berg, R., Ward, R.E. & Keech, A. (2017). The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults: a systematic review and meta-analysis. Obesity Reviews, 18(6). pp. 635–646. https://doi.org/10.1111/obr.12532.
World Health Organization (WHO). (2019). Global Heart Observatory (GHO) Data. Available at: https://www.who.int/gho/ncd/risk_factors/bmi_text/en/.
Zaetun, S., Dewi, L.B.K. & Widiadnya, I.B.R. (2018). Profil Kadar Mda (Malondialdehide) Sebagai Penanda Kerusakan Seluler Akibat Radikal Bebas Pada Tikus Yang Diberikan Air Beroksigen. Jurnal Analis Medika Bio Sains, 5(1). pp. 79–84.
##submission.copyrightStatement##