Forecasting Demand Produk Batik Di Tengah Pandemi Covid-19 Studi Pada Usaha Batik Fendy, Klaten

  • Lilia Pasca Riani Universitas Negeri Yogyakarta
  • Muhammad Roestam Afandi Universitas Negeri Yogyakarta
Abstract views: 2826 , PDF downloads: 1566
Keywords: Linear Exponential Smoothing, Produk Batik, Peramalan Permintaan

Abstract

The objectives of this study are forecast the demand for batik cloth and batik clothing in May 2020 and analyze the accuracy of forecasting demand for batik cloth and batik clothing.

This research is a descriptive study with a quantitative approach. Using data by interviews with Batik Fendy Business Managers and actual sales data from November 2019 to April 2020. There are two stages of data analysis that is calculating demand forecasting of batik cloth and batik clothing for May 2020 with the Linear Exponential Smoothing method uses a combination of α 0,8 / β 0,1 and α 0,9 / β 0,2 constant. While the second stage is to analyze the accuracy of the method of demand forecasting using the MAPE Technique.

The results of this study are for batik cloth products, predicted sales demand for May 2020 is 316 pieces with 30% MAPE. As for the batik clothing forecasting demand for May 2020 is 432 pieces with a MAPE of 19,8%.

Downloads

Download data is not yet available.

References

Gunaryati, A., Andryana, S., & Kasyfi, F. (2019). Perbandingan Metode Peramalan Eksponensial Smoothing dan Metode Jaringan Syaraf Tiruan Propagasi Balik untuk Data Pengguna Pita Lebar (Broadband) di Indonesia. Jurnal Sistem Informasi, Teknologi Informatika Dan Komputer, 8(February), 81–89. https://doi.org/10.24853/justit.8.2.81-89

Heizer, J., Render, B., & Munson, C. (2017). Principles of Operations Management; Sustainability and Suply Chain Management. In Principles of Operations Management.

Indah, D. R., & Rahmadani, E. (2018). Sistem Forecasting Perencanaan Produksi dengan Metode Single Eksponensial Smoothing pada Keripik Singkong Srikandi Di Kota Langsa. Jurnal Penelitian Ekonomi Akutansi (JENSI), 2(1), 10–18.

Kinasih, S., Agoestanto, A., & Sugiman. (2018). Optimasi Parameter pada Model Exponential Smoothing Menggunakan Metode. UNNES Journal of Mathematics, 7(1), 37–46.

Laksmana, R. D., Santoso, E., & Rahayudi, B. (2019). Prediksi Penjualan Roti Menggunakan Metode Exponential Smoothing ( Studi Kasus : Harum Bakery ). 3(5), 4933–4941.

Maricar, M. A. (2019). Analisa Perbandingan Nilai Akurasi Moving Average dan Exponential Smoothing untuk Sistem Peramalan Pendapatan pada Perusahaan XYZ. 13, 36–45.

Santoso, A. B., & Kusumajaya, R. A. (2019). Analisa Algoritma Exponential Smoothing Untuk Sistem Perencanaan Produksi Kain Batik Di Ukm Batik. 23–32.

Sherlia, Y., & Sugiono. (2017). Sistem Peramalan MEnggunakan Metode Exponential Smoothing dan Weght Moving Average di Perusahaan Konstruksi Telekomunikasi. Kovergensi, 13(2), 1689–1699. https://doi.org/10.1017/CBO9781107415324.004

Tistiawan, T. A., & Andini, T. D. (2019). Pemanfaatan Metode Triple Exponential Smoothing Dalam Peramalan Penjualan Pada Pt.Dinamika Daya Segara Malang. Jurnal Ilmiah Teknologi Informasi Asia, 13(1), 69. https://doi.org/10.32815/jitika.v13i1.345

PlumX Metrics

Published
2020-10-23
How to Cite
Pasca Riani, L., & Afandi, M. R. (2020). Forecasting Demand Produk Batik Di Tengah Pandemi Covid-19 Studi Pada Usaha Batik Fendy, Klaten. JURNAL NUSANTARA APLIKASI MANAJEMEN BISNIS, 5(2), 122-132. https://doi.org/10.29407/nusamba.v5i2.14441