ANALYSIS OF QUALITY CLASSIFICATION RESULTS OF CAYALE CHILI USING SUPPORT VECTOR MACHINE METHOD
DOI:
https://doi.org/10.29407/noe.v7i2.22167Keywords:
Classification, Cayenne pepper, Image, Support Vector Machine, Canny edge detectionAbstract
This research aims to implement the Support Vector Machine (SVM) method in classifying cayenne pepper images based on their quality. A total of 800 images of cayenne pepper were collected and grouped into four quality classes, namely rotten, greenish, dry and ripe. The classification process using SVM involves a preprocessing stage, image segmentation with Canny edge detection, and model performance evaluation. Implementation is carried out through the development of a web application with several worksheets, including model training worksheets, classification process, classification results, evaluation and export. System testing involves alpha and beta functional testing. Alpha functional testing includes homepage display and navigation tests, model training process, image classification process, classification results, classification evaluation, and export of classification results. Beta functional testing is carried out by involving users who provide feedback through questionnaires. The test results show that the application succeeded in classifying the image of cayenne pepper with high accuracy and received a positive assessment from users. The results of the F1-Score calculation for SVM classification show good model performance, with F1-Score values for each quality class of cayenne pepper as follows: Rotten (0.973), Greenish (0.979), Dry (1.0), and Ripe (0.972). Thus, this research contributes to the application of SVM for image classification of cayenne peppers with satisfactory results, as well as presenting a reliable application in supporting the quality analysis of cayenne peppers.
References
Arifin, S., & Helilintar, R. (2022, August). Sistem Pendukung Keputusan Penentuan Restock Barang Dengan Metode Naive Bayes. In Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi), Vol. 6, No. 2, pp. 259-264. (Online)
Ayuningtyas, N., Nining, R., & Basysyar, F. M. (2022). Penerapan Data Mining pada Penjualan Produk MS Glow Menggunakan Metode Naive Bayes untuk Strategi Pemasaran. Jurnal Accounting Information System (AIMS), 5(2), 157-166. (Online)
Damara, M. D. S., Farida, I. N., & Sahertian, J. (2021, August). Sistem Prediksi Minat Penjualan Jaket di Grosir Murah Kediri Menggunakan Metode Naive Bayes. In Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi), Vol. 5, No. 1, pp. 309-314. (Online)
Erfina, A. (2021). Buku Ajar Data Mining. Nusa Putra Press.
Ferdika, M., & Kuswara, H. (2017). Sistem Informasi Penjualan Berbasis Web Pada PT Era Makmur Cahaya Damai Bekasi. Information System For Educators And Professionals: Journal of Information System, 1(2), 175-188. (Online)
Hutahaean, M. (2022). Penerapan Data Mining untuk Memprediksi Penjualan Obat di Klinik Harapan Kita Batam. Doctoral dissertation, Prodi Teknik Informatika. (Online)
Lestari, A., Sucipto, A. A., Priandika, A. T., Apririansyah, A., & Suwarno, Y. (2023). Implementasi Safety Stock Pada Sistem Pengelolaan Stok Pada Toko Si Oemar Bakery Berbasis Web. TELEFORTECH: Journal of Telematics and Information Technology, 3(1), 5-11.
Mubarrizi, N. M. (2023). Sistem Informasi Pengelolaan Persediaan Bahan Produksi Dan Pembayaran Tagihan Menggunakan Metode Periodic Review Pada Ben’s Bakery Berbasis Web. Jurnal SITECH: Sistem Informasi dan Teknologi, 6(1), 33-44.
Pratama, F. D., Zufria, I., & Triase, T. (2022). Implementasi Data Mining Menggunakan Algoritma Naïve Bayes Untuk Klasifikasi Penerima Program Indonesia Pintar. Rabit: Jurnal Teknologi dan Sistem Informasi Univrab, 7(1), 77-84. (Online)
Romli, I., Pusnawati, E., & Siswandi, A. (2019). Penentuan tingkat penjualan mobil di Indonesia dengan menggunakan Algoritma Naive Bayes. e-Prosiding SNasTekS, 1(1), 367-380. (Online)
Sanubari, T., Prianto, C., & Riza, N. (2020). Odol (one desa one product unggulan online) penerapan metode Naive Bayes pada pengembangan aplikasi e-commerce menggunakan Codeigniter (Vol. 1). Kreatif. (Online)
Setyawan, M. Y. H., & Pratiwi, D. A. (2020). Membuat sistem informasi gadai online menggunakan codeigniter serta kelola proses pemberitahuannya. Kreatif Industri Nusantara. (Online)
Wijaya, H. D., & Dwiasnati, S. (2020). Implementasi Data Mining dengan Algoritma Naïve Bayes pada Penjualan Obat. Jurnal Informatika, 7(1), 1-7. (Online)
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- The author grants the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-ShareAlike 4.0 International License