ANALYSIS OF QUALITY CLASSIFICATION RESULTS OF CAYALE CHILI USING SUPPORT VECTOR MACHINE METHOD

Authors

  • Ade kurniadi Universitas Nusantara PGRI Kediri
  • Patmi Kasih Universitas Nusantara PGRI Kediri
  • Intan Nur Farida Universitas Nusantara PGRI Kediri

DOI:

https://doi.org/10.29407/noe.v7i2.22167

Keywords:

Classification, Cayenne pepper, Image, Support Vector Machine, Canny edge detection

Abstract

This research aims to implement the Support Vector Machine (SVM) method in classifying cayenne pepper images based on their quality. A total of 800 images of cayenne pepper were collected and grouped into four quality classes, namely rotten, greenish, dry and ripe. The classification process using SVM involves a preprocessing stage, image segmentation with Canny edge detection, and model performance evaluation. Implementation is carried out through the development of a web application with several worksheets, including model training worksheets, classification process, classification results, evaluation and export. System testing involves alpha and beta functional testing. Alpha functional testing includes homepage display and navigation tests, model training process, image classification process, classification results, classification evaluation, and export of classification results. Beta functional testing is carried out by involving users who provide feedback through questionnaires. The test results show that the application succeeded in classifying the image of cayenne pepper with high accuracy and received a positive assessment from users. The results of the F1-Score calculation for SVM classification show good model performance, with F1-Score values ​​for each quality class of cayenne pepper as follows: Rotten (0.973), Greenish (0.979), Dry (1.0), and Ripe (0.972). Thus, this research contributes to the application of SVM for image classification of cayenne peppers with satisfactory results, as well as presenting a reliable application in supporting the quality analysis of cayenne peppers.

References

Aminudin, N., & Sari, I. A. P. (2017). Sistem Pendukung Keputusan (DSS) Penerima Bantuan Program Keluarga Harapan (PKH) Pada Desa Bangun Rejo Kec. Punduh Pidada Pesawaran Dengan Menggunakan Metode Analytical Hierarcy Process (AHP). Jurnal TAM (Technology Acceptance Model), Vol. 5, 66-72. (Online)

Arifin, S., & Helilintar, R. (2022, August). Sistem Pendukung Keputusan Penentuan Restock Barang Dengan Metode Naive Bayes. In Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi), Vol. 6, No. 2, pp. 259-264. (Online)

Ayuningtyas, N., Nining, R., & Basysyar, F. M. (2022). Penerapan Data Mining pada Penjualan Produk MS Glow Menggunakan Metode Naive Bayes untuk Strategi Pemasaran. Jurnal Accounting Information System (AIMS), 5(2), 157-166. (Online)

Damara, M. D. S., Farida, I. N., & Sahertian, J. (2021, August). Sistem Prediksi Minat Penjualan Jaket di Grosir Murah Kediri Menggunakan Metode Naive Bayes. In Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi), Vol. 5, No. 1, pp. 309-314. (Online)

Erfina, A. (2021). Buku Ajar Data Mining. Nusa Putra Press.

Ferdika, M., & Kuswara, H. (2017). Sistem Informasi Penjualan Berbasis Web Pada PT Era Makmur Cahaya Damai Bekasi. Information System For Educators And Professionals: Journal of Information System, 1(2), 175-188. (Online)

Hutahaean, M. (2022). Penerapan Data Mining untuk Memprediksi Penjualan Obat di Klinik Harapan Kita Batam. Doctoral dissertation, Prodi Teknik Informatika. (Online)

Lestari, A., Sucipto, A. A., Priandika, A. T., Apririansyah, A., & Suwarno, Y. (2023). Implementasi Safety Stock Pada Sistem Pengelolaan Stok Pada Toko Si Oemar Bakery Berbasis Web. TELEFORTECH: Journal of Telematics and Information Technology, 3(1), 5-11.

Mubarrizi, N. M. (2023). Sistem Informasi Pengelolaan Persediaan Bahan Produksi Dan Pembayaran Tagihan Menggunakan Metode Periodic Review Pada Ben’s Bakery Berbasis Web. Jurnal SITECH: Sistem Informasi dan Teknologi, 6(1), 33-44.

Pratama, F. D., Zufria, I., & Triase, T. (2022). Implementasi Data Mining Menggunakan Algoritma Naïve Bayes Untuk Klasifikasi Penerima Program Indonesia Pintar. Rabit: Jurnal Teknologi dan Sistem Informasi Univrab, 7(1), 77-84. (Online)

Romli, I., Pusnawati, E., & Siswandi, A. (2019). Penentuan tingkat penjualan mobil di Indonesia dengan menggunakan Algoritma Naive Bayes. e-Prosiding SNasTekS, 1(1), 367-380. (Online)

Sanubari, T., Prianto, C., & Riza, N. (2020). Odol (one desa one product unggulan online) penerapan metode Naive Bayes pada pengembangan aplikasi e-commerce menggunakan Codeigniter (Vol. 1). Kreatif. (Online)

Setyawan, M. Y. H., & Pratiwi, D. A. (2020). Membuat sistem informasi gadai online menggunakan codeigniter serta kelola proses pemberitahuannya. Kreatif Industri Nusantara. (Online)

Wijaya, H. D., & Dwiasnati, S. (2020). Implementasi Data Mining dengan Algoritma Naïve Bayes pada Penjualan Obat. Jurnal Informatika, 7(1), 1-7. (Online)

Downloads

PlumX Metrics

Published

2024-11-08

How to Cite

kurniadi, A., Kasih, P., & Farida, I. N. (2024). ANALYSIS OF QUALITY CLASSIFICATION RESULTS OF CAYALE CHILI USING SUPPORT VECTOR MACHINE METHOD. Nusantara of Engineering (NOE), 7(2), 224–231. https://doi.org/10.29407/noe.v7i2.22167

Most read articles by the same author(s)

1 2 > >>