ANALISA LOG AKSES DI E-LEARNING MENGGUNAKAN ASSOCIATION RULE MINING UNTUK MENGENALI POLA BELAJAR SISWA (Studi Kasus di SMUN 1 Pare Kediri)
Abstract
Abstraksi
Data log aktifitas siswa di aplikasi e-learning menjadi sangat penting sekali manakala seorang guru ingin mempelajari pola perilaku siswanya ketika berinteraksi dengan aplikasi tersebut. Salah satu metode yang dapat digunakan untuk melakukan ekstraksi informasi mengenai pola perilaku menggunakan data log seperti itu yaitu menggunakan metode apriori. Apriori merupakan salah satu algoritma dalam model association rules mining yang saat ini sangat populer sekali dalam dunia machine learning. Association rule mining digunakan untuk menemukan asosiasi antar aktifitas di e-learning. Asosiasi ini berupa rules yang menyatakan hubungan sejumlah aktifitas. Kekuatan hubungan ini diukur menggunakan ukuran minimum support dan confidence. Dari penelitian ini dengan minimum support 0.2 dan confidence 1 dihasilkan sebuah aktifitas dengan asosiasi yang sangat kuat dengan banyak aktifitas lain yaitu course view. Dengan keakuratan mencapai 90%. Hal ini berarti aktifitas tersebut menjadi sangatlah penting untuk menjadi perhatian para guru untuk menyiapkan bahan ajar sebaik – baiknya dalam aplikasi e-learning.
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- The author grants the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-ShareAlike 4.0 International License