Uji Perbandingan Akurasi Analisis Sentimen Pariwisata Menggunakan Algoritma Support Vector Machine dan Naive Bayes
DOI:
https://doi.org/10.29407/noe.v3i2.12338Abstract
Analisis sentimen saat ini banyak digunakan sebagai bahan untuk mengetahui opini masyarakat tentang suatu hal. Dengan menggunakan analisis sentimen kita dapat mengklasifikasikan data apakah data tersebut termasuk opini positif atau opini negatif. Paper ini membahas analisis sentimen untuk mengukur tingakat akurasi dari opini masyarakat pada suatu tempat wisata di Jawa Tengah dengan metode Naive Bayes dan Support Vektor Machine yang berguna untuk mengetahui nilai akurasi yang manakah yang lebih bagus dari dua metode yang digunakan tersebut. Ada beberapa metode yang bisa digunakan untuk mengklasifikasikan opini tersebut, namun dalam paper ini dipilih metode Support Vektor Machine dan metode Naive Bayes dengan alasan metode tersebut adalah metode yang paling banyak digunakan saat ini karena dapat menghasilkan nilai akurasi yang tinggi dari penelitian sebelumnya. Hasil yang didapatkan dari penelitian ini adalah berupa data perbandingan Precision, Recall dan Akurasi. Hasil precision pada NB adalah 65,97%, pada SVM 87,25%. Nilai Recall pada NB adalah 96,39%, pada SVM 80,60%. Nilai akurasi yang didapatkan pada NB 65,78%, pada SVM 76,47%
Kata Kunci : Analisis sentimen, opini, klasifikasi, metode, Suport Vektor Machine, Naive Bayes, akurasi
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- The author grants the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-ShareAlike 4.0 International License