Implementation of Discrete Wavelet Transformation Method with K-Nearest Neighbor for Eye Disease ClassificationWord

Authors

  • Muhammad Attiqi Alghozali Universitas Nusantara PGRI Kediri
  • Danar Puta Pamungkas Universitas Nusantara PGRI Kediri
  • Umi Mahdiyah Universitas Nusantara PGRI Kediri

DOI:

https://doi.org/10.29407/noe.v7i02.22889

Keywords:

eye, disease, knn, wavelet, cataract

Abstract

The eye is an organ in humans that functions as seeing objects around with the reflection of light received by the retina. This sense of vision can be affected by diseases that often occur, including cataracts, as well as other diseases such as glaucoma and retinal disease. The eye disease will interfere with the activities of the sufferer and can also attack his psyche. In examining and ensuring that eye diseases can be done by utilizing technology, with the development of technology to identify eye diseases can be done. Through an image of the patient's retinal fundus, the image can be processed using the image processing method. By combining image processing with classification methods from machine learning, images can be processed until they are identified in the class. This study was conducted with the aim of classifying eye diseases using the discrete wavelet transformation method with K-nearest neighbor, obtaining an accuracy level of 61% in the classification of a class. These results indicate that the classification can be done quite well, but in the results obtained, not all classes can classify well. Using datasets from Kaggle 300 normal eye datasets, 100 cataract eye datasets, 101 glaucoma eye datasets, and 100 retinal disease eye datasets, there are 4 classes of retinal fundus images. The retinal fundus is an image obtained as a result of capturing using a tool called the Ophthalmoscope where this tool helps illuminate and magnify the image in the eye to produce a capture of the retinal fundus.

References

[1] D. Juniati dan A. E. Suwanda, “Klasifikasi Penyakit Mata Berdasarkan Citra Fundus Retina Menggunakan Dimensi Fraktal Box Counting Dan Fuzzy K-Means,” Prox. J. Penelit. Mat. dan Pendidik. Mat., vol. 5, no. 1, hal. 10–18, 2022, doi: 10.30605/proximal.v5i1.1623.
[2] Rokom, “Katarak Penyebab Terbanyak Gangguan Penglihatan di Indonesia,” Redaksi Sehat Negriku. Diakses: 20 Oktober 2023. [Daring]. Tersedia pada: https://sehatnegeriku.kemkes.go.id/baca/umum/20211012/5738714/katarak-penyebab-terbanyak-gangguan-penglihatan-di-indonesia/
[3] A. J. F. D. K. Geza Jeremia Bu’ulölö, “jm_informatika,+34208-73917-1-ED+375-382,” vol. 16, no. 4, hal. 375–382, 2021.
[4] M. D. Ramadhan dan B. Setiyono, “Pengolahan Citra untuk Mengetahui Tingkat Kesegaran Ikan Menggunakan Metode Transformasi Wavelet Diskrit,” J. Sains dan Seni ITS, vol. 8, no. 1, hal. 23–28, 2019, doi: 10.12962/j23373520.v8i1.37715.
[5] R. Nurlizah, A. E. Minarno, dan G. W. Wicaksono, “Klasifikasi Penyakit Katarak Pada Mata Manusia Menggunakan Metode Convolutional Neural Network,” Repositor, vol. 4, no. 4, hal. 491–496, 2022.
[6] V. Wirawan dan Y. E. Soelistio, “Model Klasifikasi Mata Katarak dan Normal Menggunakan Histogram,” J. Ultim., vol. 9, no. 1, hal. 33–36, 2017, doi: 10.31937/ti.v9i1.561.
[7] I. H. W. Jayawardanu dan S. Hansun, “Rancang Bangun Sistem Pakar untuk Deteksi Dini Katarak Menggunakan Algoritma C4.5,” J. Ultim. Comput., vol. 7, no. 2, hal. 48–58, 2016, doi: 10.31937/sk.v7i2.232.
[8] Hartono, A. T. Hernowo, dan M. B. Sasongko, “Ilmu Kesehatan Mata FK UGM,” Buku Ilmu Kesehat. Mata, hal. 15–18, 2013.
[9] P. Nurtantio Andono, Sutjono.T, dan Muljono, Pengolahan Citra Digital. 2017.
[10] D. P. Pamungkas, “Ekstraksi Citra menggunakan Metode GLCM dan KNN untuk Identifikasi Jenis Anggrek (Orchidaceae),” Innov. Res. Informatics, vol. 1, no. 2, hal. 51–56, 2019, doi: 10.37058/innovatics.v1i2.872.

Downloads

PlumX Metrics

Published

2024-10-13

How to Cite

Alghozali, M. A., Pamungkas, D. P., & Mahdiyah, U. (2024). Implementation of Discrete Wavelet Transformation Method with K-Nearest Neighbor for Eye Disease ClassificationWord. Nusantara of Engineering (NOE), 7(2), 103–109. https://doi.org/10.29407/noe.v7i02.22889