Optimasi Convolutional Neural Network dengan Standard Deviasi untuk Klasifikasi Pneumonia pada Citra X-rays Paru
Abstract
Pneumonia merupakan penyakit yang ada pada paru paru yang bisa di lihat lebih detailnya dengan foto rontgen. Foto rontgen ini memiliki biaya yang murah di bandingan dengan diagnosis dengan alat medis yang lain yang mempunyai kemiripan fungsinya. Computer vison merupakan bidang ilmu dalam Teknik informatika yang mengolah infomasi gambar atau video yang akan di jadikan informasi. Pada penelitian ini mengunakan foto rontgen untuk mendeteksi foto rontgen yang paru paru normal serta yang terkena penyakit pneumonia mengunakan metode CNN yang di preprocessing citra digitalnya dengan standard deviasi. Dalam penelitian ini menghasilkan akurasi sebesar 98% untuk gambar yang di preprocessing mengunakan standard deviasi serta 90% yang hanya mengunakan metode CNN. Hasil tersebut mengunakan data foto rontgen sebanyak 5.218 gambar yang terdiri dari 2 kelas yaitu kelas paru paru normal dan paru terkena pneumonia. Dari total tersebut dimana total gambar yang normal sebanyak 1342 dan yang terkena penyakit 3876 gambar.
References
A. S. Panayides et al., “AI in Medical Imaging Informatics: Current Challenges and Future Directions,” IEEE J. Biomed. Heal. Informatics, vol. 24, no. 7, pp. 1837–1857, 2020, doi: 10.1109/JBHI.2020.2991043.
S. Shoar and D. M. Musher, “Etiology of community-acquired pneumonia in adults: a systematic review,” Pneumonia, vol. 12, no. 1, 2020, doi: 10.1186/s41479-020-00074-3.
P. M. M. Sauteur, “Challenges and progress toward determining pneumonia etiology,” Clin. Infect. Dis., vol. 71, no. 3, pp. 514–516, 2020, doi: 10.1093/cid/ciz879.
M. H. Guo et al., “Attention mechanisms in computer vision: A survey,” Comput. Vis. Media, vol. 8, no. 3, pp. 331–368, 2022, doi: 10.1007/s41095-022-0271-y.
H. Fonda, “Klasifikasi Batik Riau Dengan Menggunakan Convolutional Neural Networks (Cnn),” J. Ilmu Komput., vol. 9, no. 1, pp. 7–10, 2020, doi: 10.33060/jik/2020/vol9.iss1.144.
N. D. Miranda, L. Novamizanti, and S. Rizal, “Convolutional Neural Network Pada Klasifikasi Sidik Jari Menggunakan Resnet-50,” J. Tek. Inform., vol. 1, no. 2, pp. 61–68, 2020, doi: 10.20884/1.jutif.2020.1.2.18.
N. Fadlia and R. Kosasih, “Klasifikasi Jenis Kendaraan Menggunakan Metode Convolutional Neural Network (Cnn),” J. Ilm. Teknol. dan Rekayasa, vol. 24, no. 3, pp. 207–215, 2019, doi: 10.35760/tr.2019.v24i3.2397.
M. R. D. Septian, A. A. A. Paliwang, M. Cahyanti, and E. R. Swedia, “Penyakit Tanaman Apel Dari Citra Daun Dengan Convolutional Neural Network,” Sebatik, vol. 24, no. 2, pp. 207–212, 2020, doi: 10.46984/sebatik.v24i2.1060.
I. Wulandari, H. Yasin, and T. Widiharih, “Klasifikasi Citra Digital Bumbu Dan Rempah Dengan Algoritma Convolutional Neural Network (Cnn),” J. Gaussian, vol. 9, no. 3, pp. 273–282, 2020, doi: 10.14710/j.gauss.v9i3.27416.
T. Dwi Antoko, M. Azhar Ridani, and A. Eko Minarno, “Klasifikasi Buah Zaitun Menggunakan Convolution Neural Network,” Komputika J. Sist. Komput., vol. 10, no. 2, pp. 119–126, 2021, doi: 10.34010/komputika.v10i2.4475.
I. M. D. Maysanjaya, “Klasifikasi Pneumonia pada Citra X-rays Paru-paru dengan Convolutional Neural Network,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 9, no. 2, pp. 190–195, 2020, doi: 10.22146/jnteti.v9i2.66.
S. Pathan, P. C. Siddalingaswamy, and T. Ali, “Automated Detection of Covid-19 from Chest X-ray scans using an optimized CNN architecture,” Appl. Soft Comput., vol. 104, p. 107238, 2021, doi: 10.1016/j.asoc.2021.107238.
B. Priya Prathaban and R. Balasubramanian, “Dynamic learning framework for epileptic seizure prediction using sparsity based EEG Reconstruction with Optimized CNN classifier,” Expert Syst. Appl., vol. 170, no. December 2020, p. 114533, 2021, doi: 10.1016/j.eswa.2020.114533.
M. Heidari, S. Mirniaharikandehei, A. Z. Khuzani, G. Danala, Y. Qiu, and B. Zheng, “Improving the performance of CNN to predict the likelihood of COVID-19 using chest X-ray images with preprocessing algorithms,” Int. J. Med. Inform., vol. 144, no. September, p. 104284, 2020, doi: 10.1016/j.ijmedinf.2020.104284.
M. Gandhi, J. Kamdar, and M. Shah, “Preprocessing of Non-symmetrical Images for Edge Detection,” Augment. Hum. Res., vol. 5, no. 1, pp. 1–10, 2020, doi: 10.1007/s41133-019-0030-5.
J. M. Amigo and C. Santos, “Preprocessing of hyperspectral and multispectral images,” Data Handl. Sci. Technol., vol. 32, pp. 37–53, 2020, doi: 10.1016/B978-0-444-63977-6.00003-1.
K. Avinash, M. B. Bijoy, and P. B. Jayaraj, Early Detection of Breast Cancer Using Support Vector Machine With Sequential Minimal Optimization, vol. 1082. 2020. doi: 10.1007/978-981-15-1081-6_2.
T. Rahman, M. E. H. Chowdhury, and A. Khandakar, “applied sciences Transfer Learning with Deep Convolutional Neural Network ( CNN ) for Pneumonia Detection Using,” MDPI, J. app Sci., vol. 3233, pp. 1–17, 2020
Copyright (c) 2023 Ucta Pradema Sanjaya, Zakki Alawi, Afta Ramadhan Zayn, Guruh Dirgantara
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright on any article is retained by the author(s).
2. The author grants the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.
3. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
4. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
5. The article and any associated published material is distributed under the Creative Commons Attribution-ShareAlike 4.0 International License