Analisis Frekuensi Natural Rangka Main Landing Gear Pesawat UAV Menggunakan Ansys Workbench

  • Lasinta Ari Nendra Wibawa Badan Riset dan Inovasi Nasional (BRIN)
Abstract views: 581 , pdf downloads: 747
Keywords: modal analysis, ansys workbench, natural frequency, main landing gear UAV, finite element method

Abstract

The main landing gear is one of the important components in UAV aircraft. This paper aims to analyze the natural frequency of the main landing gear and determine its normal mode shape. This analysis is important so that no resonance causes damage to the main landing gear components. The main landing gear uses Aluminum 6061 material and the analysis is carried out using the finite element method with the help of Ansys Workbench software. The analysis showed that the natural main landing gear frequencies for mode 1 to mode 6 were 76.04 Hz, 85.07 Hz, 167.82 Hz, 201.92 Hz, 288.39 Hz, and 327.00 Hz, respectively. The maximum deformation of the main landing gear for mode 1 to mode 6 is 33.73 mm, 35.35 mm, 48.16 mm, 44.62 mm, 38.14 mm, and 41.51 mm, respectively.

Downloads

Download data is not yet available.

References

L. A. N. Wibawa, “Pengaruh Pemilihan Material Terhadap Kekuatan Rangka Main Landing Gear Untuk Pesawat UAV,” J. Technol. Implement. Bussines, vol. 2, no. 1, pp. 48–52, 2019.

L. A. N. Wibawa, “Pengaruh Kecepatan Landing Vertikal Terhadap Ketahanan Beban Impak Rangka Landing Gear Menggunakan Metode Elemen Hingga,” Angkasa J. Ilm. Bid. Teknol., vol. 11, no. 1, pp. 35–42, 2019.

L. A. N. Wibawa, “Pengaruh Diameter Baut Terhadap Kekuatan Rangka Main Landing Gear Pesawat UAV Menggunakan Metode Elemen Hingga,” J. Polimesin, vol. 17, no. 1, pp. 26–32, 2019.

L. A. N. Wibawa, “Pengaruh Susunan dan Jumlah Lubang Baut Terhadap Kekuatan Rangka Main Landing Gear Untuk Pesawat UAV,” Flywheel J. Tek. Mesin Untirta, vol. 5, no. 1, pp. 46–50, 2019.

L. A. N. Wibawa, “Simulasi Umur Fatik Rangka Main Landing Gear Menggunakan Metode Elemen Hingga,” Din. Tek. Mesin, vol. 10, no. 2, pp. 120–126, 2020.

Q. M. Fan, “Modal analysis of a truck transmission based on ANSYS,” Proc. - 4th Int. Conf. Inf. Comput. ICIC 2011, pp. 358–360, 2011.

F. Klimenda and J. Soukup, “Modal Analysis of Thin Aluminium Plate,” Procedia Eng., vol. 177, pp. 11–16, 2017.

M. A. B. Marzuki, M. H. A. Halim, and A. R. N. Mohamed, “Determination of natural frequencies through modal and harmonic analysis of space frame race car chassis based on ANSYS,” Am. J. Eng. Appl. Sci., vol. 8, no. 4, pp. 538–548, 2015.

A. Israr, “Vibration and modal analysis of low earth orbit satellite,” Shock Vib., vol. 2014, 2014.

S. Balaguru, E. Natarajan, S. Ramesh, and B. Muthuvijayan, “Structural and modal analysis of scooter frame for design improvement,” Mater. Today Proc., vol. 16, pp. 1106–1116, 2019.

S. Sahu and B. B. Choudhury, Stress and Modal Analysis of Six-Axis Articulated Robot Using ANSYS, vol. 40. Springer Singapore, 2019.

R. Fernandes, S. El-Borgi, K. Ahmed, M. I. Friswell, and N. Jamia, “Static fracture and modal analysis simulation of a gas turbine compressor blade and bladed disk system,” Adv. Model. Simul. Eng. Sci., vol. 3, no. 1, 2016.

J. K. Sharma and S. K. Parashar, “Experimental modal analysis using laser vibrometer and finite element modeling of milling machine arbor,” SN Appl. Sci., vol. 1, no. 6, pp. 1–10, 2019.

S. K. Sharma, Jai Kumar; Parashar, “Experimental Investigation Using Laser Vibrometer and Finite Element Modeling for Modal Analysis of Camshaft,” in Engineering Vibration, Communication and Information Processing, Lecture Notes in Electrical Engineering 478, vol. 478, Springer Singapore, 2019, pp. 121–129.

P. P. Kumar, Ashwani Kumar; Mamgain, Deepak Prasad; Jaiswal, Himanshu; Patil, “Modal Analysis of Hand-Arm Vibration (Humerus Bone) for Biodynamic Response Using Varying Boundary Conditions Based on FEA,” in Intelligent Computing, Communication and Devices, Advances in Intelligent Systems and Computing, vol. 308, 2015, pp. 169–176.

S. S. B. Chinka, B. Adavi, and S. R. Putti, “Effect of Crack Location and Crack Depth on Natural Frequencies of Fixed Beam Using Experimental Modal Analysis,” Recent Adv. Mater. Sci. Lect. Notes Multidiscip. Ind. Eng., pp. 93–103, 2019.

J. B. Ooi, X. Wang, C. S. Tan, J. H. Ho, and Y. P. Lim, “Modal and stress analysis of gear train design in portal axle using finite element modeling and simulation,” J. Mech. Sci. Technol., vol. 26, no. 2, pp. 575–589, 2012.

C. Bhowmik and P. Chakraborti, “Analytical and Experimental Modal Analysis of Electrical Transmission Tower to Study the Dynamic Characteristics and Behaviors,” KSCE J. Civ. Eng., vol. 24, no. 3, pp. 931–942, 2020.

S. S. Harak, S. C. Sharma, and S. P. Harsha, “Modal analysis of prestressed draft pad of freight wagons using finite element method,” J. Mod. Transp., vol. 23, no. 1, pp. 43–49, 2015.

L. A. N. Wibawa, “Desain dan Analisis Tegangan Alat Pengangkat Roket Kapasitas 10 Ton Menggunakan Metode Elemen Hingga,” J. Energi dan Teknol. Manufaktur, vol. 02, no. 01, pp. 23–26, 2019.

L. A. N. Wibawa, “Desain dan Analisis Tegangan Crane Hook Model Circular Section Kapasitas 5 Ton Menggunakan Autodesk Inventor 2017,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 10, no. 1, pp. 27–32, 2019.

PlumX Metrics

Published
2022-06-30
How to Cite
[1]
L. A. N. Wibawa, “Analisis Frekuensi Natural Rangka Main Landing Gear Pesawat UAV Menggunakan Ansys Workbench”, JMN, vol. 5, no. 1, pp. 65-73, Jun. 2022.