Mengoptimalkan Analisis Sifat Mekanik Material Berbasis Data Dengan Pandas Profiling

  • Desmarita Leni Universita Muhammadiyah Sumatera Barat
  • Femi Earnestly Universitas Muhammadiyah Sumatera Barat
  • Nike Angelia Politeknik Negeri Padang
  • Elsa Nofriyanti Politeknik Negeri Padang
  • Adriansyah Adriansyah Politeknik Negeri Padang
Abstract views: 56 , PDF downloads: 20
Keywords: pandas profiling, sifat mekanik, visualisasi, data

Abstract

The analysis of mechanical properties based on data is a method used to analyze the mechanical properties of a material using data, typically obtained from a material database. This process encounters several challenges, such as large volume of data, complexity in data processing, as well as difficulties in data visualization and interpretation. In this study, Pandas Profiling, a Python library designed specifically for automated dataset analysis, was employed. The dataset used consisted of tensile test results for various austenitic stainless steel types such as SUS 304, SUS 316, SUS 321, SUS 347, and NCF 800H. This dataset comprised 1916 samples with attributes related to mechanical properties and factors influencing them. The analysis results using Pandas Profiling indicated a strong negative correlation between heat treatment temperature and Yield Strength (YS) and Ultimate Tensile Strength (UTS). Additionally, a positive correlation was found between chemical elements such as Copper (Cu) and Nickel (Ni) with Elongation (EL). Furthermore, the analysis results revealed that stainless steel treated with water cooling exhibited a higher average UTS value, measuring at 493 MPa, compared to air cooling, which only reached 403 MPa. Pandas Profiling offers an effective solution to overcome common challenges in data-based mechanical property analysis, including dealing with large data volumes, complex data processing, as well as challenges in data visualization and interpretation. By utilizing Pandas Profiling, researchers can easily comprehend the dataset comprehensively, identify patterns, trends, and relationships among variables, and optimize the analysis process of data-based material mechanical properties.

 

Downloads

Download data is not yet available.

References

J. Jung et al., “Super-resolving material microstructure image via deep learning for microstructure characterization and mechanical behavior analysis,” Npj Comput. Mater., vol. 7, no. 1, p. 96, Jun. 2021, doi: 10.1038/s41524-021-00568-8.

F. Chen, J Z., “An intelligent online detection approach based on big data for mechanical properties of hot-rolled strip,” Int. J. Model. Identif. Control, vol. 37, no. 2, pp. 106–112.

A. Agrawal and A. Choudhary, “Perspective: Materials informatics and big data: Realization of the ‘fourth paradigm’ of science in materials science,” APL Mater., vol. 4, no. 5, p. 053208, May 2016, doi: 10.1063/1.4946894.

D. Merayo, A. Rodriguez-Prieto, and A. M. Camacho, “Prediction of Physical and Mechanical Properties for Metallic Materials Selection Using Big Data and Artificial Neural Networks,” IEEE Access, vol. 8, pp. 13444–13456, 2020, doi: 10.1109/ACCESS.2020.2965769.

D. Leni, F. Earnestly, R. Sumiati, A. Adriansyah, and Y. P. Kusuma, “Evaluasi sifat mekanik baja paduan rendah bedasarkan komposisi kimia dan suhu perlakuan panas menggunakan teknik exploratory data analysis (EDA),” Din. Tek. Mesin, vol. 13, no. 1, p. 74, Apr. 2023, doi: 10.29303/dtm.v13i1.624.

F. Khodabakhshi, F M. H., Nosko, M Gerlich, A. P., Trembošová, V, and Khajepour, A., “Effects of laser additive manufacturing on microstructure and crystallographic texture of austenitic and martensitic stainless steels.,” Addit. Manuf., vol. 31, p. 100915.

E. A. Trillo and L. E. Murr, “Effects of carbon content, deformation, and interfacial energetics on carbide precipitation and corrosion sensitization in 304 stainless steel,” Acta Mater., vol. 47, no. 1, pp. 235–245, Dec. 1998, doi: 10.1016/S1359-6454(98)00322-X.

H. Jirková, L. Kučerová, and B. Mašek, “The Effect of Chromium on Microstructure Development During Q-P Process,” Mater. Today Proc., vol. 2, pp. S627–S630, 2015, doi: 10.1016/j.matpr.2015.07.362.

S. Dean, M. Martins, and L. Casteletti, “Effect of Heat Treatment on the Mechanical Properties of ASTM A 890 Gr6A Super Duplex Stainless Steel,” J. ASTM Int., vol. 2, no. 1, p. 13037, 2005, doi: 10.1520/JAI13037.

Yang, H., “Data preprocessing,” 3rd ed.Pennsylvania State University:Citeseer. [Online]. Available: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=53fef985237ae14efddeaf202d44c35ce714d8e2

P. Mishra, A. Biancolillo, J. M. Roger, F. Marini, and D. N. Rutledge, “New data preprocessing trends based on ensemble of multiple preprocessing techniques,” TrAC Trends Anal. Chem., vol. 132, p. 116045, Nov. 2020, doi: 10.1016/j.trac.2020.116045.

D. Leni, “Pemilihan Algoritma Machine Learning Yang Optimal Untuk Prediksi Sifat Mekanik Aluminium.,” J. Engine Energi Manufaktur Dan Mater., vol. 7, no. 1, pp. 35–44, 2023.

J. D. Romano et al., “PMLB v1.0: an open-source dataset collection for benchmarking machine learning methods,” Bioinformatics, vol. 38, no. 3, pp. 878–880, Jan. 2022, doi: 10.1093/bioinformatics/btab727.

B. Gordon et al., “Evaluation of freely available data profiling tools for health data research application: a functional evaluation review,” BMJ Open, vol. 12, no. 5, p. e054186, May 2022, doi: 10.1136/bmjopen-2021-054186.

D. Leni, Y. P. Kusuma, M. Muchlisinalahuddin, R. Sumiati, and H. C. Mayana, “THE IMPLEMENTATION OF PANDAS PROFILING AS A TOOL FOR ANALYZING MECHANICAL PROPERTIES DATA OF NICKEL-BASED SUPERALLOYS BASED ON ALLOY CHEMICAL COMPOSITION,” Int. J. Innov. Mech. Eng. Adv. Mater., vol. 4, no. 3, p. 86, May 2023, doi: 10.22441/ijimeam.v4i3.19439.

A. F. G. Cabral, Data Profiling in Cloud Migration: Data Quality Measures While Migrating Data from a Data Warehouse to the Google Cloud Platform (Doctoral dissertation. Universidade Nova de Lisboa, 2021. [Online]. Available: https://run.unl.pt/bitstream/10362/117609/1/TAA0085.pdf

M. Elansary, “Data wrangling & preparation automation. Why should you lose 80% of your time in one task?,” 2021, doi: 10.13140/RG.2.2.13981.03047.

Swedberg, R. (2020), Exploratory research. The production of knowledge, Enhancing progress in social science. Cambridge University. [Online]. Available: https://books.google.co.id/books?hl=id&lr=&id=vlTMDwAAQBAJ&oi=fnd&pg=PA17&dq=Swedberg,+R.+(2020).+Exploratory+research.+The+production+of+knowledge:+Enhancing+progress+in+social+science,+17-41.&ots=lTvEk0R8Wn&sig=CfT4crd1_Bm_stxlrEqEIapGJOo&redir_esc=y#v=onepage&q&f=false

S. L. Siedlecki, “Understanding Descriptive Research Designs and Methods,” Clin. Nurse Spec., vol. 34, no. 1, pp. 8–12, Jan. 2020, doi: 10.1097/NUR.0000000000000493.

British Steelmakers Creep Committee, BSCC High Temperature Data: British Long Term Creep Rupture and Elevated Temperature Tensile Data on Steels for High Temperature Service, vol. 56. Iron and Steel Institute for the British Steelmakers Creep Committee, 1974. [Online]. Available: https://books.google.co.id/books/about/BSCC_High_Temperature_Data.html?id=S4CjbwAACAAJ&redir_esc=y

“Materials Algorithms Project Materials Data Library.”

D. Leni and R. Sumiati, “Perbandingan Alogaritma Machine Learning Untuk Prediksi Sifat Mekanik Pada Baja Paduan Rendah.,” J. Rekayasa Mater. Manufaktur Dan Energi, vol. 5, no. 2, pp. 167–174.

J. Adler and I. Parmryd, “Quantifying colocalization by correlation: The Pearson correlation coefficient is superior to the Mander’s overlap coefficient,” Cytometry A, vol. 77A, no. 8, pp. 733–742, Mar. 2010, doi: 10.1002/cyto.a.20896.

S. Zhang et al., “Precipitation behavior and phase transformation mechanism of super austenitic stainless steel S32654 during isothermal aging,” Mater. Charact., vol. 137, pp. 244–255, Mar. 2018, doi: 10.1016/j.matchar.2018.01.040.

F. M. Moniruzzaman et al., “Study of direct aging heat treatment of additively manufactured PH13–8Mo stainless steel: role of the manufacturing process, phase transformation kinetics, and microstructure evolution,” J. Mater. Res. Technol., vol. 24, pp. 3772–3787, May 2023, doi: 10.1016/j.jmrt.2023.04.023.

M. C. Niu, K. Yang, J. H. Luan, W. Wang, and Z. B. Jiao, “Cu-assisted austenite reversion and enhanced TRIP effect in maraging stainless steels,” J. Mater. Sci. Technol., vol. 104, pp. 52–58, Mar. 2022, doi: 10.1016/j.jmst.2021.06.055.

W. Bleck, X. Guo, and Y. Ma, “The TRIP Effect and Its Application in Cold Formable Sheet Steels: The TRIP Effect and Its Application in Cold Formable,” Steel Res. Int., vol. 88, no. 10, p. 1700218, Oct. 2017, doi: 10.1002/srin.201700218.

M. Bayerlein, H.-J. Christ, and H. Mughrabi, “Plasticity-induced martensitic transformation during cyclic deformation of AISI 304L stainless steel,” Mater. Sci. Eng. A, vol. 114, pp. L11–L16, Jul. 1989, doi: 10.1016/0921-5093(89)90871-X.

D. Kong et al., “About metastable cellular structure in additively manufactured austenitic stainless steels,” Addit. Manuf., vol. 38, p. 101804, Feb. 2021, doi: 10.1016/j.addma.2020.101804.

M. E. R. Cronemberger et al., “Study of Cooling Rate Influence on SAF 2205 Duplex Stainless Steel Solution Annealed,” Mater. Sci. Forum, vol. 802, pp. 398–403, Dec. 2014, doi: 10.4028/www.scientific.net/MSF.802.398.

PlumX Metrics

Published
2024-06-28
How to Cite
[1]
D. Leni, F. Earnestly, N. Angelia, E. Nofriyanti, and A. Adriansyah, “Mengoptimalkan Analisis Sifat Mekanik Material Berbasis Data Dengan Pandas Profiling ”, JMN, vol. 7, no. 1, pp. 34-48, Jun. 2024.