Abstrak
The effects of a hot environment on aerobic performance study have not been well documented. The temperature and humidity of an environment affect the body's physiology, influence physical appearance, and affect the less advantageous process of oxygen intake (VO2Max). Hence, a question arises in this study is the effect of environmental temperatures on the body condition while exercising. Accordingly, the purpose of this study is to examine the effect of different environmental temperatures on VO2max of PPLP (Students education and training center/pusat pendidikan dan latihan pelajar) athletes in java island, Indonesia. This study employs an observational study method, in which the researcher only observes at one time, without intervention on the examined variables. The subjects are 80 PPLP athletes from Java, specifically 20 Athletes of Central Java, 20 Athletes of East Java,20 Athletes of West Java and 20 Athletes of Yogyakarta. The results of this study indicate that VO2max is significantly decreased at the air temperature of 34°C with relative humidity of 70% and the air temperature of 32°C with relative humidity of60% compared to the air temperature of 23°C with relative humidity of 69% and the air temperature of 31°C with relative humidity of 50%. Aerobic performance is intensely influenced by cardiovascular function. A hot environment increases the blood flow of the skin, which changes cardiovascular function. Consequently, this decreases oxygen intake (VO2max).
Referensi
Arngrímsson, S. Á., Petitt, D. S., Borrani, F., Skinner, K. A., & Cureton, K. J. (2004). Hyperthermia and maximal oxygen uptake in men and women. European Journal of Applied Physiology, 92(4–5), 524–532. https://doi.org/10.1007/s00421-004-1053-1
Backx, K., Mc Naughton, L., Crickmore, L., Palmer, G., & Carlisle, A. (2000). Effects of differing heat and humidity on the performance and recovery from multiple high intensity, intermittent exercise bouts. International Journal of Sports Medicine, 21(6), 400–405. https://doi.org/10.1055/s-2000-3833
Camboni, D., Philipp, A., Schebesch, K.-M., & Schmid, C. (2008). Accuracy of core temperature measurement in deep hypothermic circulatory arrest. Interactive CardioVascular and Thoracic Surgery, 7(5), 922–924. https://doi.org/10.1510/icvts.2008.181974
Cheuvront, S. N., Kenefick, R. W., Montain, S. J., & Sawka, M. N. (2010). Mechanisms of aerobic performance impairment with heat stress and dehydration. Journal of Applied Physiology, 109(6), 1989–1995. https://doi.org/10.1152/japplphysiol.00367.2010
Crewe, H., Tucker, R., & Noakes, T. D. (2008). The rate of increase in rating of perceived exertion predicts the duration of exercise to fatigue at a fixed power output in different environmental conditions. European Journal of Applied Physiology, 103(5), 569–577. https://doi.org/10.1007/s00421-008-0741-7
Gisolfi, C. V. (1983). Temperature regulation during exercise: Directions—1983. Medicine and Science in Sports and Exercise, 15(1), 15–20. https://doi.org/10.1249/00005768-198315010-00006
Göbölös, L., Philipp, A., Ugocsai, P., Foltan, M., Thrum, A., Miskolczi, S., Ohri, S. K. (2014). Reliability of different body temperature measurement sites during aortic surgery. Perfusion (United Kingdom), 29(1), 75–81. https://doi.org/10.1177/0267659113497228
Mintarto, E., & Fattahilah, M. (2019). Efek Suhu Lingkungan Terhadap Fisiologi Tubuh pada saat Melakukan Latihan Olahraga. JSES: Journal of Sport and Exercise Science, 2(1), 9-13.
Park, S. G., Bae, Y. J., Lee, Y. S., & Kim, B. J. (2012). Effects of rehydration fluid temperature and composition on body weight retention upon voluntary drinking following exercise-induced dehydration. Nutrition Research and Practice, 6(2), 126–131. https://doi.org/10.4162/nrp.2012.6.2.126
Podrabsky, J. E., Stillman, J. H., & Tomanek, L. (2015). Biochemical adaptation: Unity in principles, diversity in solutions. Journal of Experimental Biology, 218(12), 1797–1798. https://doi.org/10.1242/jeb.124479
Sacha, J. J., & Quinn, J. M. (2011). The environment, the airway, and the athlete. Annals of Allergy, Asthma and Immunology, 106(2), 81–87. https://doi.org/10.1016/j.anai.2010.06.004
Sandi, I. N. (2014). Pengaruh Suhu Dan Kelembaban Relatif Udara Terhadap Penampilan Fisik Dalam Olahraga. Seminar Nasional Prodi Biologi F. MIPA UNHI, 282–287. Retrieved from http://digilib.mercubuana.ac.id/manager/t!@file_artikel_abstrak/Isi_Artikel_730549414152.pdf
Sawka, M. N., Cheuvront, S. N., & Kenefick, R. W. (2012). High skin temperature and hypohydration impair aerobic performance. Experimental Physiology, 97(3), 327–332. https://doi.org/10.1113/expphysiol.2011.061002
Snell, P. G., Stray-Gundersen, J., Levine, B. D., Hawkins, M. N., & Raven, P. B. (2007). Maximal oxygen uptake as a parametric measure of cardiorespiratory capacity. Medicine and Science in Sports and Exercise, 39(1), 103–107. https://doi.org/10.1249/01.mss.0000241641.75101.64
Stensrud, T., Berntsen, S., & Carlsen, K. H. (2006). Humidity influences exercise capacity in subjects with exercise-induced bronchoconstriction (EIB). Respiratory Medicine, 100(9), 1633–1641. https://doi.org/10.1016/j.rmed.2005.12.001
Taylor, C. A., Cheng, C. P., Espinosa, L. A., Tang, B. T., Parker, D., & Herfkens, R. J. (2002). In vivo quantification of blood flow and wall shear stress in the human abdominal aorta during lower limb exercise. Annals of Biomedical Engineering, 30(3), 402–408. https://doi.org/10.1114/1.1476016
Tyka, A., Palka, T., Tyka, A., Cison, T., & Szygula, Z. (2009). The influence of ambient temperature on power at anaerobic threshold determined based on blood lactate concentration and myoelectric signals. International Journal of Occupational Medicine and Environmental Health, 22(1), 1–6. https://doi.org/10.2478/v10001-009-0005-8
Zhao, J., Lorenzo, S., An, N., Feng, W., Lai, L., & Cui, S. (2013). Effects of heat and different humidity levels on aerobic and anaerobic exercise performance in athletes. Journal of Exercise Science and Fitness, 11(1), 35–41. https://doi.org/10.1016/j.jesf.2013.04.002
##submission.copyrightStatement##