Implementation of the K-Nearest Neighbor Algorithm Determination of Fish Feed Dosage

Authors

DOI:

https://doi.org/10.29407/noe.v8i02.25658

Keywords:

decision support system, feed classification, feed distribution, fish farming, k-nearest neighbor algorithm

Abstract

Feeding is one of the important factors in fish farming because it contributes a large part of the total operational costs. Incorrect feed dosage can cause waste or inhibit fish growth. This study aims to develop a system for determining fish feed dosage automatically using the K-Nearest Neighbor (KNN) algorithm. The system uses input in the form of fish weight and age to predict the percentage of daily feed requirements, which is then multiplied by biomass to produce the amount of feed required. The study was conducted using a quantitative approach and experimental methods. Data were collected through observation and interviews with fish farmers, then through a pre-processing stage before being trained using KNN. This system also recommends the type of feed based on the classification of fish age. The application is built with the Streamlit framework and tested through functional and non-functional testing. The test results show that the system runs well, produces consistent output, is quickly accessible, and is easy to use on various devices. With good classification accuracy, this system is able to help farmers, especially beginners, in determining the appropriate dosage and type of feed efficiently and based on data. This system is expected to improve cultivation efficiency and support sustainable aquaculture practices.

Abstract views: 0 , PDF downloads: 0

References

Anwar, L. O., Payama, W., & Sari, S. F. (2024). Analisis Mutu Kimia Pakan Ikan dari Tepung Ikan Julung-Julung (Hemiramphus sp.) Sebagai Sumber Protein Utama. JSIPi (JURNAL SAINS DAN INOVASI PERIKANAN)(JOURNAL OF FISHERY SCIENCE AND INNOVATION), 8(1), 53–60.

Ekasari, J., Banin, M. I. L., Fauzi, I. A., & Vinasyiam, A. (t.t.). EVALUASI MANAJEMEN PEMBERIAN PAKAN PADA PEMBESARAN IKAN LELE DENGAN SISTEM BIOFLOK PADA SKALA LAPANG. Saintek Perikanan: Indonesian Journal of Fisheries Science and Technology, 20(2).

Firmansyah, D., Syauqy, D., & Maulana, R. (2019). Implementasi Algoritme K-Nearest Neighbour pada Sistem Monitoring dan Klasifikasi Air Aquarium Ikan Koi berbasis Embedded System. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 3(8), 8104–8111.

Janna, M., & Pasau, N. S. (2022). Analisis proksimat pakan ikan di Balai Budidaya Air Payau Takalar. Filogeni: Jurnal Mahasiswa Biologi, 2(3), 86–90.

Khazaidan, K., & Mikdarullah, M. (t.t.). ANALISIS BEBERAPA BAHAN PAKAN IKAN SECARA PROKSIMAT. Buletin Teknik Litkayasa Akuakultur, 15(2), 83–88.

Kurniawan, D. W. (2019). Analisa pengelolaan pakan ikan lele guna efisiensi biaya produksi untuk meningkatkan hasil penjualan. IQTISHADequity: Ekonomi dan Bisnis, 2(1), 54–67.

Maulidan, A., Rifai, M., & Achmadiah, M. N. (2023). Implementasi Metode K-Nearest Neighbor Pada Penelitian Sistem Otomasi Pemberian Pakan Ikan Nila Bioflok. Jurnal Elektronika dan Otomasi Industri, 10(3), 354–360.

Mikdarullah, M., Nugraha, A., & Khazaidan, K. (2020). Analisis proksimat tepung ikan dari beberapa lokasi yang berbeda. Buletin Teknik Litkayasa Akuakultur, 18(2), 133–138.

Suhartono, A. F., Kallista, M., & Wibowo, I. P. D. (2024). Implementasi Folium dan Streamlit Pada Website Klasifikasi Kualitas Air Sungai Citarum (CITASI). eProceedings of Engineering, 11(4), 3148–3155.

Syafarina, G. A., & Zaenuddin, Z. (2023a). Implementasi Framework Streamlit Sebagai Prediksi Harga Jual Rumah Dengan Linear Regresi. Metik Jurnal, 7(2), 121–125.

Syafarina, G. A., & Zaenuddin, Z. (2023b). Implementasi Framework Streamlit Sebagai Prediksi Harga Jual Rumah Dengan Linear Regresi. Metik Jurnal, 7(2), 121–125.

Wahyudin, Y., & Rahayu, D. N. (2020). Analisis metode pengembangan sistem informasi berbasis website: a literatur review. Jurnal Interkom: Jurnal Publikasi Ilmiah Bidang Teknologi Informasi Dan Komunikasi, 15(3), 119–133.

Wahyuni, E. D., & Sari, R. P. (2024). Transformasi Data Statistik Menjadi Visual Interaktif Menggunakan Streamlit: Studi Kasus BPS Kota Mojokerto. JURNAL KRIDATAMA SAINS DAN TEKNOLOGI, 6(02), 804–822.

Downloads

PlumX Metrics

Published

2025-10-11

How to Cite

Implementation of the K-Nearest Neighbor Algorithm Determination of Fish Feed Dosage. (2025). Nusantara of Engineering (NOE), 8(02), 347 – 353. https://doi.org/10.29407/noe.v8i02.25658

Similar Articles

1-10 of 56

You may also start an advanced similarity search for this article.