Optimizing Rice Plant Disease Classification Using Data Augmentation with GANs on Convolutional Neural Networks

Authors

DOI:

https://doi.org/10.29407/intensif.v9i1.23834

Keywords:

CNN, DCGAN, Image Quality Enhancement, Imbalanced Datasets, Synthetic Data

Abstract

Background: Rice disease classification using CNN models faces challenges due to limited data, particularly in minority classes, and inconsistent image quality, which affect model performance. Data augmentation techniques can potentially enhance classification accuracy by improving data diversity and quality. Objective: This study evaluates the effectiveness of data augmentation techniques, specifically classical augmentation and Deep Convolutional Generative Adversarial Networks (DCGAN), in improving CNN performance for rice disease classification. Methods: A quantitative study was conducted using four CNN training scenarios: no augmentation, classical augmentation, DCGAN augmentation, and a combination of both. Model accuracy was analyzed to determine the impact of each augmentation technique. Results: The baseline CNN model achieved an accuracy of 91.88%. Classical augmentation improved accuracy by 2.56%, while DCGAN augmentation led to a 5.44% increase. The combination of classical augmentation and DCGAN yielded the highest accuracy of 98.13%. Conclusion: Data augmentation significantly enhances CNN performance in rice disease classification, with the combined approach of classical augmentation and DCGAN proving to be the most effective. These findings highlight the importance of augmentation techniques in addressing data limitations and improving classification accuracy. Future research should explore additional augmentation strategies and test the model across different datasets to further validate its effectiveness.

Downloads

Download data is not yet available.

Author Biographies

  • Tinuk Agustin, STMIK Amikom Surakarta

    Informatics, STMIK AMIKOM Surakarta

  • Indrawan Ady Saputro, STMIK AMIKOM Surakarta

    Informatics, STMIK AMIKOM Surakarta

       

     

     

  • Mochammad Luthfi Rahmadi, Universitas Siber Muhammadiyah

    Informatics, Universitas Siber Muhammadiyah

       

     

     

References

A. S. Wibowo, Indikator Pertanian 2020. ©Badan Pusat Statistik/BPS- Statistics Indonesia, 2021.

A. B. Setiawan, A. D. Nugroho, D. T. Wiyanti, M. Yusuf, A. Maslikhatun, and P. A. Bowo, “Indonesian Food Production Challenges: Climate, Land and Industrialization,” JEJAK, vol. 16, no. 1, Mar. 2023, doi: 10.15294/jejak.v16i1.43334. DOI: https://doi.org/10.15294/jejak.v16i1.43334

N. Ngadi et al., “Challenge of Agriculture Development in Indonesia: Rural Youth Mobility and Aging Workers in Agriculture Sector,” Sustainability, vol. 15, no. 2, p. 922, Jan. 2023, doi: 10.3390/su15020922. DOI: https://doi.org/10.3390/su15020922

Statista, “Agriculture in Indonesia - statistics & facts,” Statista Research Department, 2023. [Online]. Available: https://www.statista.com/topics/7732/agriculture-industry-in-indonesia/#topicOverview

I. Hamim, B. Sipes, and Y. Wang, “Editorial: Detection, characterization, and management of plant pathogens,” Front. Plant Sci., vol. 15, Feb. 2024, doi: 10.3389/fpls.2024.1354042. DOI: https://doi.org/10.3389/fpls.2024.1354042

Y.-P. Wang et al., “Optimizing Plant Disease Management in Agricultural Ecosystems Through Rational In-Crop Diversification,” Front. Plant Sci., vol. 12, Dec. 2021, doi: 10.3389/fpls.2021.767209. DOI: https://doi.org/10.3389/fpls.2021.767209

L. Kaur and S. G. Sharma, “Identification of plant diseases and distinct approaches for their management,” Bull. Natl. Res. Cent., vol. 45, no. 1, p. 169, Dec. 2021, doi: 10.1186/s42269-021-00627-6. DOI: https://doi.org/10.1186/s42269-021-00627-6

L. Li, S. Zhang, and B. Wang, “Plant Disease Detection and Classification by Deep Learning—A Review,” IEEE Access, vol. 9, pp. 56683–56698, 2021, doi: 10.1109/ACCESS.2021.3069646. DOI: https://doi.org/10.1109/ACCESS.2021.3069646

A. Jafar, N. Bibi, R. A. Naqvi, A. Sadeghi-Niaraki, and D. Jeong, “Revolutionizing agriculture with artificial intelligence: plant disease detection methods, applications, and their limitations,” Front. Plant Sci., vol. 15, Mar. 2024, doi: 10.3389/fpls.2024.1356260. DOI: https://doi.org/10.3389/fpls.2024.1356260

A.-K. Mahlein et al., “Special Issue: Digital Plant Pathology for Precision Agriculture,” J. Plant Dis. Prot., vol. 129, no. 3, pp. 455–456, Jun. 2022, doi: 10.1007/s41348-022-00620-9. DOI: https://doi.org/10.1007/s41348-022-00620-9

İ. Yağ and A. Altan, “Artificial Intelligence-Based Robust Hybrid Algorithm Design and Implementation for Real-Time Detection of Plant Diseases in Agricultural Environments,” Biology (Basel)., vol. 11, no. 12, p. 1732, Nov. 2022, doi: 10.3390/biology11121732. DOI: https://doi.org/10.3390/biology11121732

B. P. Zen, I. K. A, and D. C. Fransisca, “Applications for Detecting Plant Diseases Based on Artificial Intelligence,” Sinkron, vol. 7, no. 4, pp. 2537–2546, 2022, doi: 10.33395/sinkron.v7i4.11833. DOI: https://doi.org/10.33395/sinkron.v7i4.11833

J. Yao, S. N. Tran, S. Garg, and S. Sawyer, “Deep Learning for Plant Identification and Disease Classification from Leaf Images: Multi-prediction Approaches,” Oct. 2023, [Online]. Available: http://arxiv.org/abs/2310.16273

F. Haider, A. Ahmed, and M. Rahman, “CNN-Based Rice Plant Disease Detection,” J. Plant Sci. Res., vol. 12, no. 4, pp. 301–310, 2023.

K. Haider et al., “A Comprehensive Study of Plant Disease Detection Using Deep Learning Methods,” 2023, pp. 441–458. doi: 10.1007/978-3-031-25088-0_40. DOI: https://doi.org/10.1007/978-3-031-25088-0_40

L. Budach et al., “The Effects of Data Quality on Machine Learning Performance,” Jul. 2022, [Online]. Available: http://arxiv.org/abs/2207.14529

B. Tugrul, E. Elfatimi, and R. Eryigit, “Convolutional Neural Networks in Detection of Plant Leaf Diseases: A Review,” Agriculture, vol. 12, no. 8, p. 1192, Aug. 2022, doi: 10.3390/agriculture12081192. DOI: https://doi.org/10.3390/agriculture12081192

Y. Chen, J. Pan, and Q. Wu, “Apple leaf disease identification via improved CycleGAN and convolutional neural network,” Soft Comput., vol. 27, no. 14, pp. 9773–9786, 2023, doi: 10.1007/s00500-023-07811-y. DOI: https://doi.org/10.1007/s00500-023-07811-y

D. Dablain, K. N. Jacobson, C. Bellinger, M. Roberts, and N. Chawla, “Understanding CNN Fragility When Learning With Imbalanced Data,” Oct. 2022, [Online]. Available: http://arxiv.org/abs/2210.09465

S. R. V. S, B. Satya, and R. K. Gorthi, “Effective-LDAM: An Effective Loss Function To Mitigate Data Imbalance for Robust Chest X-Ray Disease Classification,” Jul. 2024, [Online]. Available: http://arxiv.org/abs/2407.04953

T. Agustin, E. Utami, and H. Al Fatta, “Implementation of Data Augmentation to Improve Performance CNN Method for Detecting Diabetic Retinopathy,” 2020 3rd Int. Conf. Inf. Commun. Technol. ICOIACT 2020, pp. 83–88, 2020, doi: 10.1109/ICOIACT50329.2020.9332019. DOI: https://doi.org/10.1109/ICOIACT50329.2020.9332019

F. H. K. dos S. Tanaka and C. Aranha, “Data Augmentation Using GANs,” vol. 2019, pp. 1–16, 2019, [Online]. Available: http://arxiv.org/abs/1904.09135

T. Miyato and M. Koyama, “Generative Adversarial Network (GAN),” in Computer Vision, Cham: Springer International Publishing, 2021, pp. 508–513. doi: 10.1007/978-3-030-63416-2_860. DOI: https://doi.org/10.1007/978-3-030-63416-2_860

Y. N. Rao and K. Suresh Babu, “An Imbalanced Generative Adversarial Network-Based Approach for Network Intrusion Detection in an Imbalanced Dataset,” Sensors, vol. 23, no. 1, p. 550, Jan. 2023, doi: 10.3390/s23010550. DOI: https://doi.org/10.3390/s23010550

D. R. L. Prasanna, S. K. R. Barda, and S. Vootkuri, “Plant Leaf Disease Classification Using GAN,” 2024, pp. 237–248. doi: 10.1007/978-981-97-4727-6_24. DOI: https://doi.org/10.1007/978-981-97-4727-6_24

P. Prashant, S. Sharma, J. V. N. Ramesh, P. K. Pareek, P. K. Shukla, and S. V. Pandit, “Enhancing Tomato Leaf Disease Detection through Generative Adversarial Networks and Genetic Algorithm based Convolutional Neural Network,” Fusion Pract. Appl., vol. 16, no. 2, pp. 147–177, 2024, doi: 10.54216/FPA.160210. DOI: https://doi.org/10.54216/FPA.160210

H. Prashant, R. Sharma, and P. Singh, “Disease Detection in Tomato Plants Using GAN-CNN Models,” Int. J. Agric. Eng., vol. 19, no. 2, pp. 120–135, 2024.

K. Rao and T. Suresh Babu, “Enhancing CNN Performance Using GAN for Multiple Crop Disease Detection,” Comput. Agric., vol. 15, no. 3, pp. 210–225, 2023.

S. Cui, W. Ying, and Y. Chen, “Data Augmentation Using CycleGAN for Cassava Disease Classification,” AI Agric., vol. 6, no. 2, pp. 89–105, 2021.

L. Bi and G. Hu, “Improving Image-Based Plant Disease Classification With Generative Adversarial Network Under Limited Training Set,” Front. Plant Sci., vol. 11, Dec. 2020, doi: 10.3389/fpls.2020.583438. DOI: https://doi.org/10.3389/fpls.2020.583438

J. Wei, M. Liu, J. Luo, A. Zhu, J. Davis, and Y. Liu, “DuelGAN: A Duel Between Two Discriminators Stabilizes the GAN Training,” Jan. 2021, doi: 10.48550/arXiv.1704.02510. DOI: https://doi.org/10.1007/978-3-031-20050-2_18

X. Cui, Y. Ying, and Z. Chen, “CycleGAN based confusion model for cross-species plant disease image migration,” J. Intell. Fuzzy Syst., vol. 41, no. 6, pp. 6685–6696, Dec. 2021, doi: 10.3233/JIFS-210585. DOI: https://doi.org/10.3233/JIFS-210585

M. A. B. Mahmoud, P. Guo, and K. Wang, “Pseudoinverse learning autoencoder with DCGAN for plant diseases classification,” Multimed. Tools Appl., vol. 79, no. 35–36, pp. 26245–26263, Sep. 2020, doi: 10.1007/s11042-020-09239-0. DOI: https://doi.org/10.1007/s11042-020-09239-0

S. T. Y. Ramadan, M. S. Islam, T. Sakib, N. Sharmin, M. M. Rahman, and M. M. Rahman, “Image-based rice leaf disease detection using CNN and generative adversarial network,” Neural Comput. Appl., Nov. 2024, doi: 10.1007/s00521-024-10572-w. DOI: https://doi.org/10.1007/s00521-024-10572-w

P. Shukla et al., “Detection and Classification of Diseases in Coffee Plant Using CNN-XGBoost Composite Model,” 2024, pp. 607–617. doi: 10.1007/978-981-97-2614-1_43. DOI: https://doi.org/10.1007/978-981-97-2614-1_43

S. Yang, W. Xiao, M. Zhang, S. Guo, J. Zhao, and F. Shen, “Image Data Augmentation for Deep Learning: A Survey,” Apr. 2022, [Online]. Available: http://arxiv.org/abs/2204.08610

A. Radford, L. Metz, and S. Chintala, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks,” 2015, doi: 10.48550/arXiv.1511.06434.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun. 2018, pp. 4510–4520. doi: 10.1109/CVPR.2018.00474. DOI: https://doi.org/10.1109/CVPR.2018.00474

K. Riehl, M. Neunteufel, and M. Hemberg, “Hierarchical confusion matrix for classification performance evaluation,” J. R. Stat. Soc. Ser. C Appl. Stat., vol. 72, no. 5, pp. 1394–1412, Dec. 2023, doi: 10.1093/jrsssc/qlad057. DOI: https://doi.org/10.1093/jrsssc/qlad057

Downloads

PlumX Metrics

Published

2025-02-23

How to Cite

[1]
“Optimizing Rice Plant Disease Classification Using Data Augmentation with GANs on Convolutional Neural Networks”, INTENSIF: J. Ilm. Penelit. dan Penerap. Tek. Sist. Inf., vol. 9, no. 1, pp. 97–114, Feb. 2025, doi: 10.29407/intensif.v9i1.23834.