Sentiment Analysis Accuracy for 2024 Indonesian Election Tweets Using CNN-LSTM With Genetic Algorithm Optimization

Authors

DOI:

https://doi.org/10.29407/intensif.v9i1.22999

Keywords:

CNN-LSTM, Twitter, Election, Genetic Algorithm, Word2Vec

Abstract

Background: The 2024 Indonesian Presidential Election is ideal for analyzing public sentiment on Twitter. Data collection began with crawling from the data source to create a dataset, which included 62,955 entries from Twitter, 126,673 entries from IndoNews, and a combined Tweet+IndoNews dataset totaling 189,628 entries. Objective: This study aims to explore sentiment using a hybrid model integrating Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) methods, with feature expansion via Word2Vec optimized by a Genetic Algorithm (GA). Methods: The research evaluates the effectiveness of the hybrid CNN-LSTM model in analyzing sentiment from 2024 Indonesian Presidential Election tweets, aiming for higher accuracy and deeper insights compared to traditional methods. Results: The hybrid CNN-LSTM model, optimized with a Genetic Algorithm, significantly enhances accuracy, achieving the highest accuracy of 84.78% for the news data, marking a 3.59% increase. Conclusion: This study illustrates the innovative application of a hybrid CNN-LSTM model with Word2Vec feature expansion and Genetic Algorithm optimization for sentiment analysis in a national election context, demonstrating how advanced techniques can improve accuracy and efficiency in sentiment analysis. 

Downloads

Download data is not yet available.

Author Biographies

  • Athallah Zacky Abdullah, Telkom University

    Informatics Engineering, Telkom University

  • Erwin Budi Setiawan, Telkom University

    Informatics Engineering, Telkom University

References

A. I. Purnamasari, S. Sulbadana, S. Supriyadi, and A. Kasim, “Redesigning: Handling Of Indonesian Election Violations Abroad To Realizing Quality 2024 Elections,” Fiat Justisia: Jurnal Ilmu Hukum, vol. 17, no. 1, pp. 75–92, Mar. 2023, doi: 10.25041/fiatjustisia.v17no1.2637. DOI: https://doi.org/10.25041/fiatjustisia.v17no1.2637

W. Budiharto and M. Meiliana, “Prediction and analysis of Indonesia Presidential election from Twitter using sentiment analysis,” J Big Data, vol. 5, no. 1, Dec. 2018, doi: 10.1186/s40537-018-0164-1. DOI: https://doi.org/10.1186/s40537-018-0164-1

L. Damayanti and K. M. Lhaksmana, “Sentiment Analysis of the 2024 Indonesia Presidential Election on Twitter,” Jurnal dan Penelitian Teknik Informatika, vol. 8, no. 2, 2024, doi: 10.33395/v8i2.13379. DOI: https://doi.org/10.33395/sinkron.v8i2.13379

A. Giachanou and F. Crestani, “Like it or not: A survey of Twitter sentiment analysis methods,” Jun. 01, 2016, Association for Computing Machinery. doi: 10.1145/2938640. DOI: https://doi.org/10.1145/2938640

H. N. Chaudhry et al., “Sentiment analysis of before and after elections: Twitter data of U.S. election 2020,” Electronics (Switzerland), vol. 10, no. 17, Sep. 2021, doi: 10.3390/electronics10172082. DOI: https://doi.org/10.3390/electronics10172082

A. Fuadi, “Social media power for protest in Indonesia: The Yogyakarta’s #gejayanmemanggil case study,” Jurnal Studi Komunikasi (Indonesian Journal of Communications Studies), vol. 4, no. 3, p. 541, Nov. 2020, doi: 10.25139/jsk.v4i3.2438. DOI: https://doi.org/10.25139/jsk.v4i3.2438

A. Sarlan, C. Nadam, and S. Basri, “Twitter sentiment analysis,” in Conference Proceedings - 6th International Conference on Information Technology and Multimedia at UNITEN: Cultivating Creativity and Enabling Technology Through the Internet of Things, ICIMU 2014, Institute of Electrical and Electronics Engineers Inc., 2014, pp. 212–216. doi: 10.1109/ICIMU.2014.7066632. DOI: https://doi.org/10.1109/ICIMU.2014.7066632

Y. Wang, J. Guo, C. Yuan, and B. Li, “Sentiment Analysis of Twitter Data,” Nov. 01, 2022, MDPI. doi: 10.3390/app122211775. DOI: https://doi.org/10.3390/app122211775

W. Medhat, A. Hassan, and H. Korashy, “Sentiment analysis algorithms and applications: A survey,” Ain Shams Engineering Journal, vol. 5, no. 4, pp. 1093–1113, 2014, doi: https://doi.org/10.1016/j.asej.2014.04.011. DOI: https://doi.org/10.1016/j.asej.2014.04.011

J. Cui, Z. Wang, S. B. Ho, and E. Cambria, “Survey on sentiment analysis: evolution of research methods and topics,” Artif Intell Rev, vol. 56, no. 8, pp. 8469–8510, Aug. 2023, doi: 10.1007/s10462-022-10386-z. DOI: https://doi.org/10.1007/s10462-022-10386-z

A. U. Rehman, A. K. Malik, B. Raza, and W. Ali, “A Hybrid CNN-LSTM Model for Improving Accuracy of Movie Reviews Sentiment Analysis,” Multimed Tools Appl, vol. 78, no. 18, pp. 26597–26613, Sep. 2019, doi: 10.1007/s11042-019-07788-7. DOI: https://doi.org/10.1007/s11042-019-07788-7

M. N. Ibnu Sina and E. B. Setiawan, “Stock Price Correlation Analysis with Twitter Sentiment Analysis Using The CNN-LSTM Method,” sinkron, vol. 8, no. 4, pp. 2190–2202, Oct. 2023, doi: 10.33395/sinkron.v8i4.12855. DOI: https://doi.org/10.33395/sinkron.v8i4.12855

A. K. Sharma, S. Chaurasia, and D. K. Srivastava, “Sentimental Short Sentences Classification by Using CNN Deep Learning Model with Fine Tuned Word2Vec,” in Procedia Computer Science, Elsevier B.V., 2020, pp. 1139–1147. doi: 10.1016/j.procs.2020.03.416. DOI: https://doi.org/10.1016/j.procs.2020.03.416

R. T. Setiawan and E. B. Setiawan, “Sentiment Analysis of BBCA Stock Price on Twitter Data Using LSTM and Genetic Algorithm Optimization,” sinkron, vol. 8, no. 4, pp. 2479–2489, Oct. 2023, doi: 10.33395/sinkron.v8i4.12825. DOI: https://doi.org/10.33395/sinkron.v8i4.12825

D. Dangi, A. Bhagat, and D. K. Dixit, “Sentiment analysis on social media using genetic algorithm with CNN,” Computers, Materials and Continua, vol. 70, no. 3, pp. 5399–5419, 2022, doi: 10.32604/cmc.2022.020431. DOI: https://doi.org/10.32604/cmc.2022.020431

S. Liu, C. Zhang, and J. Ma, “CNN-LSTM Neural Network Model for Quantitative Strategy Analysis in Stock Markets,” Jun. 2017, pp. 198–206. doi: 10.1007/978-3-319-70096-0_21. DOI: https://doi.org/10.1007/978-3-319-70096-0_21

L. Hao, C. Xi, and L. xiao, “A Study of the Application of Weight Distributing Method Combining Sentiment Dictionary and TF-IDF for Text Sentiment Analysis,” IEEE Access, vol. 10, p. 1, Aug. 2022, doi: 10.1109/ACCESS.2022.3160172. DOI: https://doi.org/10.1109/ACCESS.2022.3160172

R. Ahuja, A. Chug, S. Kohli, S. Gupta, and P. Ahuja, “The impact of features extraction on the sentiment analysis,” in Procedia Computer Science, Elsevier B.V., 2019, pp. 341–348. doi: 10.1016/j.procs.2019.05.008. DOI: https://doi.org/10.1016/j.procs.2019.05.008

S. Khomsah, “Sentiment Analysis On YouTube Comments Using Word2Vec and Random Forest,” Telematika, vol. 18, p. 61, Jul. 2021, doi: 10.31315/telematika.v18i1.4493. DOI: https://doi.org/10.31315/telematika.v18i1.4493

C. Zhang, X. Wang, S. yu, and Y. Wang, “Research on Keyword Extraction of Word2vec Model in Chinese Corpus,” Aug. 2018, pp. 339–343. doi: 10.1109/ICIS.2018.8466534. DOI: https://doi.org/10.1109/ICIS.2018.8466534

I. Gde Bagus Janardana Abasan and E. B. Setiawan, “Empowering hate speech detection: leveraging linguistic richness and deep learning,” Bulletin of Electrical Engineering and Informatics, vol. 13, no. 2, pp. 1371–1382, Apr. 2024, doi: 10.11591/eei.v13i2.6938. DOI: https://doi.org/10.11591/eei.v13i2.6938

H. Khotimah, E. Setiawan, and I. Kurniawan, “Implementation Information Gain Feature Selection for Hoax News Detection on Twitter using Convolutional Neural Network (CNN),” Aug. 2020. doi: 10.34818/indojc.2021.5.3.506.

Zulqarnain, R. Ghazali, Y. Mazwin, and M. Rehan, “A comparative review on deep learning models for text classification,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 19, Aug. 2020, doi: 10.11591/ijeecs.v19.i1.pp325-335. DOI: https://doi.org/10.11591/ijeecs.v19.i1.pp325-335

A. Yadav and D. K. Vishwakarma, “Sentiment analysis using deep learning architectures: a review,” Artif. Intell. Rev., vol. 53, no. 6, pp. 4335–4385, Aug. 2020, doi: 10.1007/s10462-019-09794-5. DOI: https://doi.org/10.1007/s10462-019-09794-5

S. Seo, C. Y. Kim, H. Kim, K. Mo, and P. Kang, “Comparative Study of Deep Learning-Based Sentiment Classification,” IEEE Access, vol. PP, p. 1, Aug. 2020, doi: 10.1109/ACCESS.2019.2963426. DOI: https://doi.org/10.1109/ACCESS.2019.2963426

S. I. Putri, E. B. Setiawan, and Y. Sibaroni, “JURNAL MEDIA INFORMATIKA BUDIDARMA Aspect-Based Sentiment Analysis on Twitter Using Long Short-Term Memory Method,” 2023, doi: 10.30865/mib.v5i1.2293. DOI: https://doi.org/10.30865/mib.v7i2.5637

H. Zhou, “Research of Text Classification Based on TF-IDF and CNN-LSTM,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Jan. 2022. doi: 10.1088/1742-6596/2171/1/012021. DOI: https://doi.org/10.1088/1742-6596/2171/1/012021

A. F. Siagian, G. J. Yanris, and S. P. Sitorus, “Applying genetic algorithm for optimization income value,” Sinkron, vol. 7, no. 2, pp. 753–759, May 2022, doi: 10.33395/sinkron.v7i2.11431. DOI: https://doi.org/10.33395/sinkron.v7i2.11431

P. Rani, J. Shokeen, A. Majithia, A. Agarwal, A. Bhatghare, and J. Malhotra, “Designing an LSTM and Genetic Algorithm-based Sentiment Analysis Model for COVID-19,” 2022, pp. 209–216. doi: 10.1007/978-981-16-6285-0_17. DOI: https://doi.org/10.1007/978-981-16-6285-0_17

I. R. Illahi and E. B. Setiawan, “Sentiment Analysis of the 2024 Indonesian Presidential Election using Fasttext Feature Expansion and Recurrent Neural Network (RNN) with Genetic Algorithm Optimization,” Intl. Journal on ICT, vol. 10, no. 1, pp. 78–89, 2024, doi: 10.21108/ijoict.v10i1.905. DOI: https://doi.org/10.21108/ijoict.v10i1.905

Downloads

PlumX Metrics

Published

2025-02-23

How to Cite

[1]
“Sentiment Analysis Accuracy for 2024 Indonesian Election Tweets Using CNN-LSTM With Genetic Algorithm Optimization”, INTENSIF: J. Ilm. Penelit. dan Penerap. Tek. Sist. Inf., vol. 9, no. 1, pp. 1–14, Feb. 2025, doi: 10.29407/intensif.v9i1.22999.