Extending the Expectation Confirmation Model to Examine Continuous Use Mobile Banking: Security, Trust, and Convenience

Authors

DOI:

https://doi.org/10.29407/intensif.v9i1.23751

Keywords:

Mobile banking, ECM, Perceived Security, Trust, Continuance Intention

Abstract

Background: Mobile banking adoption continues to grow, but user retention remains a challenge. Understanding the factors influencing continuance intention is crucial for improving long-term engagement. Prior research highlights the importance of confirmation, perceived usefulness, security, satisfaction, trust, and convenience, yet their interrelationships require further exploration. Objective: This study examines key determinants of users' intention to continue using mobile banking services, focusing on how confirmation, perceived usefulness, security, satisfaction, trust, and convenience influence this decision. Methods: A quantitative study was conducted using structural equation modeling (SEM) to analyze relationships among these factors. Data were collected from mobile banking users and assessed for statistical significance. Results: Confirmation significantly impacts perceived usefulness (0.576) and satisfaction (0.527). Perceived usefulness influences satisfaction (0.289) and continuance intention (0.396), while satisfaction also affects continuance intention (0.240). Trust plays a role (0.211), and perceived security strongly influences trust (0.651). Perceived convenience also impacts continuance intention (0.304), emphasizing its importance in user experience. Conclusion: Confirmation and security are critical for satisfaction and trust, which drive continued mobile banking use. Strengthening security, improving perceived usefulness, and fostering trust can enhance user retention. Future studies should explore additional variables, test the model across demographics, and assess the impact of emerging technologies like AI and blockchain. Longitudinal and experimental research may offer deeper insights into these evolving relationships.

Downloads

Download data is not yet available.

Author Biographies

  • Ahmad Habib, Institut Sains dan Teknologi Terpadu Surabaya

    Informatics Engineering, Institut Sains dan Teknologi Terpadu Surabaya

  • Edwin Pramana, Institut Sains dan Teknologi Terpadu Surabaya

    Informatics Engineering, Institut Sains dan Teknologi Terpadu Surabaya

  • Hartarto Junaedi, Institut Sains dan Teknologi Terpadu Surabaya

    Informatics Engineering, Institut Sains dan Teknologi Terpadu Surabaya

  • Elsen Ronando, Kyushu Institute of Technology Japan

    Informatics, Kyushu Institute of Technology Japan

References

C. Jebarajakirthy and A. Shankar, “Impact of online convenience on mobile banking adoption intention: A moderated mediation approach,” Journal of Retailing and Consumer Services, vol. 58, no. June 2020, p. 102323, 2021, doi: 10.1016/j.jretconser.2020.102323. DOI: https://doi.org/10.1016/j.jretconser.2020.102323

A. Faour and A. Saif. S. S. Al-Sowaidi, “Fintech Revolution: How Established Banks Are Embracing Innovation to Stay Competitive,” Journal of Business and Management Studies, vol. 5, no. 5, pp. 166–172, 2023, doi: 10.32996/jbms.2023.5.5.14. DOI: https://doi.org/10.32996/jbms.2023.5.5.14

Y. Zhou, “An empirical examination of customer’s continuance intention of SaaS based on expectation confirmation model,” Jultika.Oulu.Fi, 2017.

(Asosiasi Penyelenggara Jasa Internet Indonesia) APJII, “APJII Jumlah Pengguna Internet Indonesia Tembus 221 Juta Orang.” Accessed: Sep. 26, 2024. [Online]. Available: https://apjii.or.id/berita/d/apjii-jumlah-pengguna-internet-indonesia-tembus-221-juta-orang

Bank Indonesia (BI), “Elektronifikasi.” Accessed: Sep. 26, 2024. [Online]. Available: https://www.bi.go.id/id/fungsi-utama/sistem-pembayaran/ritel/elektronifikasi/default.aspx

R. of I. Financial Services Authority, “Indonesia Banking Statistik,” 2023.

McKinsey & Company, “Bank Digital Jadi Primadona, Bank Konvensional Tak Merana.” Accessed: Sep. 26, 2024. [Online]. Available: https://tirto.id/bank-digital-jadi-primadona-bank-konvensional-tak-merana-gS7A

A. Geebren, A. Jabbar, and M. Luo, “Examining the role of consumer satisfaction within mobile eco-systems: Evidence from mobile banking services,” Computers in Human Behavior, vol. 114, no. May 2020, p. 106584, 2021, doi: 10.1016/j.chb.2020.106584. DOI: https://doi.org/10.1016/j.chb.2020.106584

L. Y. Leong, T. S. Hew, K. B. Ooi, and P. Y. K. Chau, “‘To share or not to share?’ – A hybrid SEM-ANN-NCA study of the enablers and enhancers for mobile sharing economy,” Decision Support Systems, vol. 180, no. April 2023, p. 114185, 2024, doi: 10.1016/j.dss.2024.114185. DOI: https://doi.org/10.1016/j.dss.2024.114185

M. Al Amin, A. M. Muzareba, I. U. Chowdhury, and M. Khondkar, “Understanding e-satisfaction, continuance intention, and e-loyalty toward mobile payment application during COVID-19: an investigation using the electronic technology continuance model,” Journal of Financial Services Marketing, no. 0123456789, 2023, doi: 10.1057/s41264-022-00197-2. DOI: https://doi.org/10.1057/s41264-022-00197-2

C. Osei-Amoako, “Financial Development in the Face of Rising Public Debt in Ghana: A Qualitative Study,” International Journal of Economics, Finance and Management Sciences, vol. 12, no. 3, pp. 161–171, 2024, doi: 10.11648/j.ijefm.20241203.13. DOI: https://doi.org/10.11648/j.ijefm.20241203.13

J. Koi-Akrofi, “Mobile Money Adoption in Africa: A Literature-Based Analysis,” Texila International Journal of Management, vol. 8, no. 2, 2022, doi: 10.21522/tijmg.2015.08.02.art014. DOI: https://doi.org/10.21522/TIJMG.2015.08.02.Art014

M. Alrizq and A. Alghamdi, “Customer satisfaction analysis with Saudi Arabia mobile banking apps: a hybrid approach using text mining and predictive learning techniques,” Neural Computing and Applications, vol. 36, no. 11, 2024, doi: 10.1007/s00521-023-09400-4. DOI: https://doi.org/10.1007/s00521-023-09400-4

A. Bhattacherjee, “Understanding Information Systems Continuance: An Expectation-Confirmation Model,” MIS Quarterly, vol. 25, no. 3, p. 351, Sep. 2001, doi: 10.2307/3250921.

J. C. Lee, Y. Tang, and S. Q. Jiang, “Understanding continuance intention of artificial intelligence (AI)-enabled mobile banking applications: an extension of AI characteristics to an expectation confirmation model,” Humanities and Social Sciences Communications, vol. 10, no. 1, pp. 1–12, 2023, doi: 10.1057/s41599-023-01845-1. DOI: https://doi.org/10.1057/s41599-023-01845-1

A. A. Rabaa’i and S. A. ALMaati, “Exploring the Determinants of Users’ Continuance Intention to Use Mobile Banking Services in Kuwait: Extending the Expectation-Confirmation Model,” Asia Pacific Journal of Information Systems, vol. 31, no. 2, pp. 141–184, 2021, doi: 10.14329/apjis.2021.31.2.141. DOI: https://doi.org/10.14329/apjis.2021.31.2.141

Q. Zhou et al., “A study on factors affecting service quality and loyalty intention in mobile banking,” Journal of Retailing and Consumer Services, vol. 60, 2021, doi: 10.1016/j.jretconser.2020.102424. DOI: https://doi.org/10.1016/j.jretconser.2020.102424

G. Do Nguyen and T. H. T. Dao, “Factors influencing continuance intention to use mobile banking: an extended expectation-confirmation model with moderating role of trust,” Humanities and Social Sciences Communications, vol. 11, no. 1, 2024, doi: 10.1057/s41599-024-02778-z. DOI: https://doi.org/10.1057/s41599-024-02778-z

H. Ben Abdennebi, “M-banking adoption from the developing countries perspective: A mediated model,” Digital Business, vol. 3, no. 2, p. 100065, 2023, doi: 10.1016/j.digbus.2023.100065. DOI: https://doi.org/10.1016/j.digbus.2023.100065

P. C. Lai and E. J. Y. Liew, “Towards a Cashless Society: The Effects of Perceived Convenience and Security on Gamified Mobile Payment Platform Adoption,” Australasian Journal of Information Systems, vol. 25, pp. 1–25, 2021, doi: 10.3127/AJIS.V25I0.2809. DOI: https://doi.org/10.3127/ajis.v25i0.2809

A. Bhattacherjee and A. Barfar, “Information Technology Continuance Research: Current State and Future Directions,” Asia Pacific Journal of Information Systems, vol. 21, no. 2, 2011.

S. Yuan, Y. Liu, R. Yao, and J. Liu, “An investigation of users’ continuance intention towards mobile banking in China,” Information Development, vol. 32, no. 1, 2016, doi: 10.1177/0266666914522140. DOI: https://doi.org/10.1177/0266666914522140

A. Bhattacherjee, “Understanding information systems continuance: An expectation-confirmation model,” MIS Quarterly: Management Information Systems, vol. 25, no. 3, 2001, doi: 10.2307/3250921. DOI: https://doi.org/10.2307/3250921

N. Sinha and N. Singh, “Revisiting expectation confirmation model to measure the effectiveness of multichannel bank services for elderly consumers,” International Journal of Emerging Markets, vol. 18, no. 10, 2023, doi: 10.1108/IJOEM-03-2021-0361. DOI: https://doi.org/10.1108/IJOEM-03-2021-0361

Y. Tang, S. Jiang, and J. C. Lee, “Continuous Usage Intention of Artificial Intelligence (AI)-Enabled Mobile Banking: A Preliminary Study,” 2022. doi: 10.2991/978-94-6463-036-7_20. DOI: https://doi.org/10.2991/978-94-6463-036-7_20

I. Hidayat-Ur-Rehman, A. Ahmad, M. N. Khan, and S. A. Mokhtar, “Investigating Mobile Banking Continuance Intention: A Mixed-Methods Approach,” Mobile Information Systems, vol. 2021, 2021, doi: 10.1155/2021/9994990. DOI: https://doi.org/10.1155/2021/9994990

D. M. Nguyen, Y. T. H. Chiu, and H. D. Le, “Determinants of continuance intention towards banks’ chatbot services in vietnam: A necessity for sustainable development,” Sustainability (Switzerland), vol. 13, no. 14, pp. 1–24, 2021, doi: 10.3390/su13147625. DOI: https://doi.org/10.3390/su13147625

P. Kline and C. R. Walters, “Evaluating public programs with close substitutes: The case of head start,” Quarterly Journal of Economics, vol. 131, no. 4, 2016, doi: 10.1093/qje/qjw027. DOI: https://doi.org/10.1093/qje/qjw027

T. N. Beran and C. Violato, “Structural equation modeling in medical research: A primer,” BMC Research Notes, vol. 3, 2010, doi: 10.1186/1756-0500-3-267. DOI: https://doi.org/10.1186/1756-0500-3-267

Y. W. Wang, H. C. Yang, Y. H. Chen, and C. Y. Guo, “Generalized Estimating Equations Boosting (GEEB) machine for correlated data,” Journal of Big Data, vol. 11, no. 1, 2024, doi: 10.1186/s40537-023-00875-5. DOI: https://doi.org/10.1186/s40537-023-00875-5

K. Groskurth, M. Bluemke, and C. M. Lechner, “Why we need to abandon fixed cutoffs for goodness-of-fit indices: An extensive simulation and possible solutions,” Behavior Research Methods, vol. 56, no. 4, 2024, doi: 10.3758/s13428-023-02193-3. DOI: https://doi.org/10.3758/s13428-023-02193-3

D. Straub and D. Gefen, “Validation Guidelines for IS Positivist Research,” Communications of the Association for Information Systems, vol. 13, no. June 2014, 2004, doi: 10.17705/1cais.01324. DOI: https://doi.org/10.17705/1CAIS.01324

B. Klontz, S. L. Britt, J. Mentzer, and T. Klontz, “Money Beliefs and Financial Behaviors: Development of the Klontz Money Script Inventory,” Journal of Financial Therapy, vol. 2, no. 1, 2011, doi: 10.4148/jft.v2i1.451. DOI: https://doi.org/10.4148/jft.v2i1.451

D. George and P. Mallery, “Validity and Reliability Report,” Research Brief, 2013.

R. B. Klein, “Principles and Practice of Structural Equation Modeling, Fourth Edition,” The Guilford Press, vol. 8, no. 5, 2016.

Downloads

PlumX Metrics

Published

2025-02-23

How to Cite

[1]
“Extending the Expectation Confirmation Model to Examine Continuous Use Mobile Banking: Security, Trust, and Convenience”, INTENSIF: J. Ilm. Penelit. dan Penerap. Tek. Sist. Inf., vol. 9, no. 1, pp. 76–96, Feb. 2025, doi: 10.29407/intensif.v9i1.23751.