Classification of Dragon Fruit Stem Diseases Using Convolutional Neural Network
Abstract
A holticulture plant known as dragon fruit (pitaya) is a fruit that has many benefits and is widely cultivated by farmers in several areas of Banyuwangi. In dragon fruit plants there are various kinds of diseases that attack including red spot, stem rot, black rot, scab, and mosaic. Farmers still recognize diseases on dragon fruit stems manually so that sometimes there are errors in disease recognition. In this research, a system was developed to identify the types of diseases on dragon fruit stems. This system was built by proposing the Convolutional neural network method with the proposed architecture using the Python programming language with the Tensorflow, Keras, and Scikit-Learn libraries. The proposed system is tested using k-fold cross validation with tunning parameters fold = 5 and epoch = 5. The training results show that the highest accuracy performance value is 85.06% with the data used as test data as many as 191 images producing 147 correct data and 44 data wrong, while the average overall accuracy score was 76.43%.
Downloads
References
M. de L. V. Vargas, J. A. T. Cortez, E. S. Duch, A. P. Lizama, and C. H. H. Méndez, “Extraction and Stability of Anthocyanins Present in the Skin of the Dragon Fruit (Hylocereus undatus),” Food Nutr. Sci., vol. 04, no. 12, pp. 1221–1228, 2013, doi: 10.4236/fns.2013.412156.
Dinas Pertanian dan Pangan Kabupaten Banyuwangi, “Data Pertanian, Perkebunan dan Peternakan Kabupaten Banyuwangi,” 2019. https://www.banyuwangikab.go.id/profil/pertanian.html (accessed Apr. 09, 2020).
A. Wibowo, A. Widiastuti, and W. Agustina, “Penyakit-Penyakit Penting Buah Naga di Tiga Sentra Pertanaman di Jawa Tengah,” J. Perlindungan Tanam. Indones., vol. 17, no. 2, pp. 66–72, 2011, doi: 10.22146/jpti.9816.
M. A. Balendres and J. C. Bengoa, “Diseases of dragon fruit (Hylocereus species): Etiology and current management options,” Crop Prot., vol. 126, p. 104920, Dec. 2019, doi: 10.1016/j.cropro.2019.104920.
L. Hakim, A. D. Wibawa, E. Septiana Pane, and M. H. Purnomo, “Emotion Recognition in Elderly Based on SpO2 and Pulse Rate Signals Using Support Vector Machine,” Proc. - 17th IEEE/ACIS Int. Conf. Comput. Inf. Sci. ICIS 2018, pp. 474–479, 2018, doi: 10.1109/ICIS.2018.8466489.
L. Hakim, S. P. Kristanto, A. Z. Khoirunnisaa, and A. D. Wibawa, “Multi- scale Entropy and Multiclass Fisher ’s Linear Discriminant for Emotion Recognition based on Multimodal Signal,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 5, no. 1, pp. 71–78, 2020.
L. Hakim, S. P. Kristanto, D. Yusuf, and F. N. Afia, “Pengenalan Motif Batik Banyuwangi Berdasarkan Fitur Gray Level Co-Occurrence Matrix,” J. Teknoinfo, vol. 16, no. 1, pp. 1–7, 2022.
L. Hakim, H. R. Rahmanto, S. P. Kristanto, and D. Yusuf, “Klasifikasi Citra Motif Batik Banyuwangi Menggunakan Convolutional Neural Network,” J. TEKNOINFO, vol. 17, no. 1, pp. 203–211, 2023.
A. Asrafil, A. Paliwang, M. R. D. Septian, M. Cahyanti, and R. Swedia, “Klasifikasi Penyakit Tanaman Apel Dari Citra Daun Dengan,” Sebatik, pp. 207–212, 2020.
P. U. Rakhmawati, Y. M. Pranoto, and E. Setyati, “Klasifikasi Penyakit Daun Kentang Berdasarkan Fitur Tekstur Dan Fitur Warna Menggunakan Support Vector Machine,” Semin. Nas. Teknol. dan Rekayasa 2018, pp. 1–8, 2018.
J. Kusanti, K. Penyakit, D. Padi, and A. Haris, “Klasifikasi Penyakit Daun Padi Berdasarkan Hasil Ekstraksi Fitur GLCM Interval 4 Sudut,” J. Inform. J. Pengemb. IT, vol. 03, no. 01, pp. 1–6, 2018.
E. K. Ratnasari, R. V. H. Ginardi, and C. Fatichah, “Klasifikasi penyakit noda pada citra daun tebu berdasarkan ciri tekstur dan warna menggunakan segmentation-based gray level co-occurrence matrix dan lab color moments,” Regist. J. Ilm. Teknol. Sist. Inf., vol. 3, no. 1, p. 1, 2017, doi: 10.26594/register.v3i1.575.
Mustika Mentari, R.V. Hari Ginardi, and C. Fatichah, “SEGMENTASI PENYAKIT PADA CITRA DAUN TEBU MENGGUNAKAN FUZZY C MEANS – SUPPORT VECTOR MACHINE DENGAN FITUR WARNA a*,” JUTI J. Ilm. Teknol. Inf., vol. 13, no. 1, pp. 45–52, 2015.
Solikin, “Deteksi Penyakit Pada Tanaman Mangga Dengan Citra Digital : Tinjauan Literatur Sistematis ( SLR ),” Bina Insa. Ict J., vol. 7, no. 1, pp. 63–72, 2020.
M. Rizzo, M. Marcuzzo, A. Zangari, A. Gasparetto, and A. Albarelli, “Fruit ripeness classification: A survey,” Artif. Intell. Agric., vol. 7, pp. 44–57, Mar. 2023, doi: 10.1016/j.aiia.2023.02.004.
M. Muttaqin et al., Pengantar Sistem Cerdas. Medan: Yayasan Kita Menulis, 2023.
L. Hakim, S. P. Kristanto, M. N. Shodiq, D. Yusuf, and W. A. Setiawan, “Segmentasi Citra Penyakit Pada Batang Buah Naga Menggunakan Metode Ruang Warba L*a*b*,” in Prosiding Seminar Nasional Terapan Riset Inovatif (SENTRINOV), 2020, vol. 6, no. 1, pp. 728–736.
L. Hakim, S. P. Kristanto, D. Yusuf, M. N. Shodiq, and W. A. Setiawan, “Disease Detection of Dragon Fruit Stem Based on The Combined Features of Color and Texture,” INTENSIF J. Ilm. Penelit. dan Penerapan Teknol. Sist. Inf., vol. 5, no. 2, pp. 161–175, 2021, doi: 10.29407/intensif.v5i2.15287.
L. Hakim, S. P. Kristanto, D. Yusuf, A. R. Asyari, and K. Umam, “Sistem Deteksi Penyakit dan Crawling Informasi pada Tanaman Buah Naga Berbasis Web dan Android,” J. TEKNOINFO, vol. 17, no. 1, pp. 27–35, 2023.
A. J. Lado et al., “Comparison of Neural Network and Random Forest Classifier Performance on Dragon Fruit Disease,” in 2021 International Electronics Symposium (IES), Sep. 2021, pp. 287–291. doi: 10.1109/IES53407.2021.9593992.
W. Dong, Y. Xia, and Y. Liu, “Dragon Fruit Disease Image Segmentation Based on FCM Algorithm and Two-Dimensional OTSU Algorithm,” in 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS), Jul. 2020, pp. 969–973. doi: 10.1109/ICPICS50287.2020.9202083.
J. Wu, “Introduction to Convolutional Neural Networks,” Introd. to Convolutional Neural Networks, pp. 1–31, 2017, [Online]. Available: https://web.archive.org/web/20180928011532/https://cs.nju.edu.cn/wujx/teaching/15_CNN.pdf
P. Mishra, PyTorch Recipes A Problem-Solution Approach. 2019.
J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for simplicity: The all convolutional net,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Work. Track Proc., pp. 1–14, 2015.
S. P. Kristanto, L. Hakim, D. Yusuf, E. S. Haq, and A. R. Asyari, “Classification of Public Opinion on Vaccine Administration Using Convolutional Neural Network,” in 2022 Fifth International Conference on Vocational Education and Electrical Engineering (ICVEE), Sep. 2022, pp. 65–71. doi: 10.1109/ICVEE57061.2022.9930412.
I. Digmi, “Memahami Epoch Batch Size Dan Iteration,” https://imam.digmi.id, 2018. https://imam.digmi.id/post/memahami-epoch-batch-size-dan-iteration/ (accessed Oct. 15, 2022).
P. Roelants, “Machine Learning 101,” https://medium.com, 2017. https://medium.com/onfido-tech/machine-learning-101-be2e0a86c96a (accessed Oct. 27, 2022).
Copyright (c) 2023 Lutfi Hakim, Aditya Roman Asyhari, Sepyan Purnama Kristanto, Dianni Yusuf, Junaedi Adi Prasetyo, Hamdan Maruli Siregar
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright on any article is retained by the author(s).
2. The author grants the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.
3. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
4. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
5. The article and any associated published material is distributed under the Creative Commons Attribution-ShareAlike 4.0 International License