Classification of Dragon Fruit Stem Diseases Using Convolutional Neural Network

Authors

DOI:

https://doi.org/10.29407/intensif.v7i2.20093

Keywords:

Pitaya Disease Detection, Disease Classification, Deep Learning, Multi-Layer Percepteron, Digital Image Processing

Abstract

A holticulture plant known as dragon fruit (pitaya) is a fruit that has many benefits and is widely cultivated by farmers in several areas of Banyuwangi. In dragon fruit plants there are various kinds of diseases that attack including red spot, stem rot, black rot, scab, and mosaic. Farmers still recognize diseases on dragon fruit stems manually so that sometimes there are errors in disease recognition. In this research, a system was developed to identify the types of diseases on dragon fruit stems. This system was built by proposing the Convolutional neural network method with the proposed architecture using the Python programming language with the Tensorflow, Keras, and Scikit-Learn libraries. The proposed system is tested using k-fold cross validation with tunning parameters fold = 5 and epoch = 5. The training results show that the highest accuracy performance value is 85.06% with the data used as test data as many as 191 images producing 147 correct data and 44 data wrong, while the average overall accuracy score was 76.43%.

Downloads

Download data is not yet available.

Author Biographies

Lutfi Hakim, Politeknik Negeri Banyuwangi

Teknologi Rekayasa Perangkat Lunak, Politeknik Negeri Banyuwangi

Aditya Roman Asyhari, Politeknik Negeri Banyuwangi

Teknologi Rekayasa Perangkat Lunak, Politeknik Negeri Banyuwangi

Sepyan Purnama Kristanto, Politeknik Negeri Banyuwangi

Teknologi Rekayasa Perangkat Lunak, Politeknik Negeri Banyuwangi

Dianni Yusuf, Politeknik Negeri Banyuwangi

Teknologi Rekayasa Perangkat Lunak, Politeknik Negeri Banyuwangi

 

Junaedi Adi Prasetyo, Politeknik Negeri Banyuwangi

Teknologi Rekayasa Komputer, Politeknik Negeri Banyuwangi

Hamdan Maruli Siregar, Universitas Jambi

Agroekoteknologi, Universitas Jambi

 

References

M. de L. V. Vargas, J. A. T. Cortez, E. S. Duch, A. P. Lizama, and C. H. H. Méndez, “Extraction and Stability of Anthocyanins Present in the Skin of the Dragon Fruit (Hylocereus undatus),” Food Nutr. Sci., vol. 04, no. 12, pp. 1221–1228, 2013, doi: 10.4236/fns.2013.412156.

Dinas Pertanian dan Pangan Kabupaten Banyuwangi, “Data Pertanian, Perkebunan dan Peternakan Kabupaten Banyuwangi,” 2019. https://www.banyuwangikab.go.id/profil/pertanian.html (accessed Apr. 09, 2020).

A. Wibowo, A. Widiastuti, and W. Agustina, “Penyakit-Penyakit Penting Buah Naga di Tiga Sentra Pertanaman di Jawa Tengah,” J. Perlindungan Tanam. Indones., vol. 17, no. 2, pp. 66–72, 2011, doi: 10.22146/jpti.9816.

M. A. Balendres and J. C. Bengoa, “Diseases of dragon fruit (Hylocereus species): Etiology and current management options,” Crop Prot., vol. 126, p. 104920, Dec. 2019, doi: 10.1016/j.cropro.2019.104920.

L. Hakim, A. D. Wibawa, E. Septiana Pane, and M. H. Purnomo, “Emotion Recognition in Elderly Based on SpO2 and Pulse Rate Signals Using Support Vector Machine,” Proc. - 17th IEEE/ACIS Int. Conf. Comput. Inf. Sci. ICIS 2018, pp. 474–479, 2018, doi: 10.1109/ICIS.2018.8466489.

L. Hakim, S. P. Kristanto, A. Z. Khoirunnisaa, and A. D. Wibawa, “Multi- scale Entropy and Multiclass Fisher ’s Linear Discriminant for Emotion Recognition based on Multimodal Signal,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 5, no. 1, pp. 71–78, 2020.

L. Hakim, S. P. Kristanto, D. Yusuf, and F. N. Afia, “Pengenalan Motif Batik Banyuwangi Berdasarkan Fitur Gray Level Co-Occurrence Matrix,” J. Teknoinfo, vol. 16, no. 1, pp. 1–7, 2022.

L. Hakim, H. R. Rahmanto, S. P. Kristanto, and D. Yusuf, “Klasifikasi Citra Motif Batik Banyuwangi Menggunakan Convolutional Neural Network,” J. TEKNOINFO, vol. 17, no. 1, pp. 203–211, 2023.

A. Asrafil, A. Paliwang, M. R. D. Septian, M. Cahyanti, and R. Swedia, “Klasifikasi Penyakit Tanaman Apel Dari Citra Daun Dengan,” Sebatik, pp. 207–212, 2020.

P. U. Rakhmawati, Y. M. Pranoto, and E. Setyati, “Klasifikasi Penyakit Daun Kentang Berdasarkan Fitur Tekstur Dan Fitur Warna Menggunakan Support Vector Machine,” Semin. Nas. Teknol. dan Rekayasa 2018, pp. 1–8, 2018.

J. Kusanti, K. Penyakit, D. Padi, and A. Haris, “Klasifikasi Penyakit Daun Padi Berdasarkan Hasil Ekstraksi Fitur GLCM Interval 4 Sudut,” J. Inform. J. Pengemb. IT, vol. 03, no. 01, pp. 1–6, 2018.

E. K. Ratnasari, R. V. H. Ginardi, and C. Fatichah, “Klasifikasi penyakit noda pada citra daun tebu berdasarkan ciri tekstur dan warna menggunakan segmentation-based gray level co-occurrence matrix dan lab color moments,” Regist. J. Ilm. Teknol. Sist. Inf., vol. 3, no. 1, p. 1, 2017, doi: 10.26594/register.v3i1.575.

Mustika Mentari, R.V. Hari Ginardi, and C. Fatichah, “SEGMENTASI PENYAKIT PADA CITRA DAUN TEBU MENGGUNAKAN FUZZY C MEANS – SUPPORT VECTOR MACHINE DENGAN FITUR WARNA a*,” JUTI J. Ilm. Teknol. Inf., vol. 13, no. 1, pp. 45–52, 2015.

Solikin, “Deteksi Penyakit Pada Tanaman Mangga Dengan Citra Digital : Tinjauan Literatur Sistematis ( SLR ),” Bina Insa. Ict J., vol. 7, no. 1, pp. 63–72, 2020.

M. Rizzo, M. Marcuzzo, A. Zangari, A. Gasparetto, and A. Albarelli, “Fruit ripeness classification: A survey,” Artif. Intell. Agric., vol. 7, pp. 44–57, Mar. 2023, doi: 10.1016/j.aiia.2023.02.004.

M. Muttaqin et al., Pengantar Sistem Cerdas. Medan: Yayasan Kita Menulis, 2023.

L. Hakim, S. P. Kristanto, M. N. Shodiq, D. Yusuf, and W. A. Setiawan, “Segmentasi Citra Penyakit Pada Batang Buah Naga Menggunakan Metode Ruang Warba L*a*b*,” in Prosiding Seminar Nasional Terapan Riset Inovatif (SENTRINOV), 2020, vol. 6, no. 1, pp. 728–736.

L. Hakim, S. P. Kristanto, D. Yusuf, M. N. Shodiq, and W. A. Setiawan, “Disease Detection of Dragon Fruit Stem Based on The Combined Features of Color and Texture,” INTENSIF J. Ilm. Penelit. dan Penerapan Teknol. Sist. Inf., vol. 5, no. 2, pp. 161–175, 2021, doi: 10.29407/intensif.v5i2.15287.

L. Hakim, S. P. Kristanto, D. Yusuf, A. R. Asyari, and K. Umam, “Sistem Deteksi Penyakit dan Crawling Informasi pada Tanaman Buah Naga Berbasis Web dan Android,” J. TEKNOINFO, vol. 17, no. 1, pp. 27–35, 2023.

A. J. Lado et al., “Comparison of Neural Network and Random Forest Classifier Performance on Dragon Fruit Disease,” in 2021 International Electronics Symposium (IES), Sep. 2021, pp. 287–291. doi: 10.1109/IES53407.2021.9593992.

W. Dong, Y. Xia, and Y. Liu, “Dragon Fruit Disease Image Segmentation Based on FCM Algorithm and Two-Dimensional OTSU Algorithm,” in 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS), Jul. 2020, pp. 969–973. doi: 10.1109/ICPICS50287.2020.9202083.

J. Wu, “Introduction to Convolutional Neural Networks,” Introd. to Convolutional Neural Networks, pp. 1–31, 2017, [Online]. Available: https://web.archive.org/web/20180928011532/https://cs.nju.edu.cn/wujx/teaching/15_CNN.pdf

P. Mishra, PyTorch Recipes A Problem-Solution Approach. 2019.

J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for simplicity: The all convolutional net,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Work. Track Proc., pp. 1–14, 2015.

S. P. Kristanto, L. Hakim, D. Yusuf, E. S. Haq, and A. R. Asyari, “Classification of Public Opinion on Vaccine Administration Using Convolutional Neural Network,” in 2022 Fifth International Conference on Vocational Education and Electrical Engineering (ICVEE), Sep. 2022, pp. 65–71. doi: 10.1109/ICVEE57061.2022.9930412.

I. Digmi, “Memahami Epoch Batch Size Dan Iteration,” https://imam.digmi.id, 2018. https://imam.digmi.id/post/memahami-epoch-batch-size-dan-iteration/ (accessed Oct. 15, 2022).

P. Roelants, “Machine Learning 101,” https://medium.com, 2017. https://medium.com/onfido-tech/machine-learning-101-be2e0a86c96a (accessed Oct. 27, 2022).

Downloads

PlumX Metrics

Published

2023-08-05

How to Cite

[1]
L. Hakim, A. R. Asyhari, S. P. Kristanto, D. Yusuf, J. A. Prasetyo, and H. M. Siregar, “Classification of Dragon Fruit Stem Diseases Using Convolutional Neural Network”, INTENSIF: J. Ilm. Penelit. dan Penerap. Tek. Sist. Inf., vol. 7, no. 2, pp. 262–275, Aug. 2023.