Efektifitas Perlindungan Korosi Aluminium Menggunakan Inhibitor Ekstrak Labu Kuning : Studi Elektrokimia dan Permukaan
DOI:
https://doi.org/10.29407/jmn.v8i1.24651Keywords:
Al, Inhibitor, Korosi, LabuAbstract
Penelitian kami berfokus pada peningkatan potensi ekstrak labu kuning sebagai penghambat korosi yang berkelanjutan untuk aluminium (Al) dalam larutan 1 M HCl. Skrining fitokimia dan aktivitas antioksidan diidentifikasi. Berbagai metodologi investigasi termasuk teknik eksperimental seperti Polarisasi Potensiodinamik (PDP) digunakan untuk mengevaluasi keefektifan inhibitor ekstrak labu kuning ini dalam menghambat korosi. Karakteristik permukaan Al yang terkorosi diperiksa dengan menggunakan kombinasi Scanning Electron Microscopy (SEM). Hasil elektrokimia menunjukkan bahwa efektivitas inhibitor bergantung pada konsentrasinya disini mencapai 82.28% pada 3000 ppm inhibitor ekstrak labu kuning. PDP menunjukkan bahwa kontrol inhibisi campuran secara efektif memperlambat korosi Al. Selanjutnya perilaku adsorpsi inhibitor ekstrak labu kuning ke Al mengikuti model isoterm Langmuir dengan sifat fisisorpsi. Analisis SEM lebih lanjut memverifikasi perubahan signifikan dalam morfologi permukaan dan kekasaran Al. Mekanisme adsorpsi dari inhibitor pada permukaan Al berhasil membentuk lapisan pelindung pada permukaan Al sehingga mengurangi laju korosi.
Downloads
References
[1] R. Shanmugapriya, M. Ravi, S. Ravi, M. Ramasamy, A. Maruthapillai, and A. S. J, “Electrochemical and Morphological investigations of Elettaria cardamomum pod extract as a green corrosion inhibitor for Mild steel corrosion in 1 N HCl,” Inorg Chem Commun, vol. 154, Aug. 2023, doi: 10.1016/j.inoche.2023.110958.
[2] L. N. Emembolu, P. E. Ohale, C. E. Onu, and N. J. Ohale, “Comparison of RSM and ANFIS modeling techniques in corrosion inhibition studies of Aspilia Africana leaf extract on mild steel and aluminium metal in acidic medium,” Applied Surface Science Advances, vol. 11, Oct. 2022, doi: 10.1016/j.apsadv.2022.100316.
[3] Y. Qiang, L. Guo, H. Li, and X. Lan, “Fabrication of environmentally friendly Losartan potassium film for corrosion inhibition of mild steel in HCl medium,” Chemical Engineering Journal, vol. 406, Feb. 2021, doi: 10.1016/j.cej.2020.126863.
[4] S. Zehra, M. Mobin, and J. Aslam, “1 - An overview of the corrosion chemistry,” in Environmentally Sustainable Corrosion Inhibitors, C. M. Hussain, C. Verma, and J. Aslam, Eds., Elsevier, 2022, pp. 3–23. doi: https://doi.org/10.1016/B978-0-323-85405-4.00012-4.
[5] R. Aslam, M. Mobin, S. Zehra, and J. Aslam, “A comprehensive review of corrosion inhibitors employed to mitigate stainless steel corrosion in different environments,” Oct. 15, 2022, Elsevier B.V. doi: 10.1016/j.molliq.2022.119992.
[6] T. Pesha, V. L. Mulaudzi, M. L. Cele, M. P. Mothapo, and F. Ratshisindi, “Evaluation of corrosion inhibition effect of glycerol stearate on aluminium metal by electrochemical techniques,” Arabian Journal of Chemistry, vol. 16, no. 7, Jul. 2023, doi: 10.1016/j.arabjc.2023.104798.
[7] M. D. Allah, M. El Hefnawy, and S. A. Elhamed, “Experimental investigation of the corrosion inhibition of Aluminum by three novel anionic surfactants as green inhibitors in HCl solution,” Chemical Data Collections, vol. 45, Jun. 2023, doi: 10.1016/j.cdc.2023.101033.
[8] Y. Cao, H. Shao, S. He, Z. Chen, and W. Yang, “Natural polycitric acid-curcumin for highly efficient corrosion inhibition of aluminum alloys,” Mater Today Commun, vol. 36, Aug. 2023, doi: 10.1016/j.mtcomm.2023.106659.
[9] H. G. Méndez-Figueroa, S. Ossandón, J. A. Ramírez Fernández, R. Galván Martínez, A. Espinoza Vázquez, and R. Orozco-Cruz, “Electrochemical evaluation of an Acanthocereus tetragonus aqueous extract on aluminum in NaCl (0.6 M) and HCl (1 M) and its modelling using forward and inverse artificial neural networks,” Journal of Electroanalytical Chemistry, vol. 918, Aug. 2022, doi: 10.1016/j.jelechem.2022.116444.
[10] Y. Fernine et al., “Ocimum basilicium seeds extract as an environmentally friendly antioxidant and corrosion inhibitor for aluminium alloy 2024 -T3 corrosion in 3 wt% NaCl medium,” Colloids Surf A Physicochem Eng Asp, vol. 627, Oct. 2021, doi: 10.1016/j.colsurfa.2021.127232.
[11] S. C. Udensi, O. E. Ekpe, and L. A. Nnanna, “Corrosion inhibition performance of low cost and eco-friendly Treculia africana leaves extract on aluminium alloy AA7075-T7351 in 2.86% NaCl solutions,” Sci Afr, vol. 12, Jul. 2021, doi: 10.1016/j.sciaf.2021.e00791.
[12] O. D. Onukwuli, I. A. Nnanwube, F. O. Ochili, and J. I. Obibuenyi, “Assessing the efficiency of danacid as corrosion inhibitor for aluminium in HCl medium: Experimental, theoretical and optimization studies,” Heliyon, vol. 10, no. 24, Dec. 2024, doi: 10.1016/j.heliyon.2024.e40994.
[13] F. Gapsari, F. G. U. Dewi, Wijaya, P. H. Setyarini, and S. Hidayatullah, “The Effectiveness of Fish Scale Waste-Synthesized Chitosan and Food-Grade Chitosan as Corrosion Inhibitor,” Journal of Southwest Jiaotong University, vol. 55, no. 2, 2020, doi: 10.35741/issn.0258-2724.55.2.47.
[14] J. Zhang, X. L. Gong, H. H. Yu, and M. Du, “The inhibition mechanism of imidazoline phosphate inhibitor for Q235 steel in hydrochloric acid medium,” Corros Sci, vol. 53, no. 10, pp. 3324–3330, Oct. 2011, doi: 10.1016/j.corsci.2011.06.008.
[15] S. Hidayatullah, A. M. Sulaiman, and E. N. Iftitah, “Durio Zibethinus Extract Performance as Corrosion Inhibitor in Simulated Seawater,” Mechanics Exploration and Material Innovation, vol. 1, no. 1, pp. 27–34, Jan. 2024, doi: 10.21776/ub.memi.2024.001.01.4.
[16] O. D. Onukwuli, I. A. Nnanwube, F. O. Ochili, and M. Omotioma, “DFT, experimental and optimization studies on the corrosion inhibition of aluminium in H2SO4 with danacid as inhibitor,” Results in Engineering, vol. 24, Dec. 2024, doi: 10.1016/j.rineng.2024.103113.
[17] H. A. Jaddoa, B. A. Abdulhussein, and J. M. Ali, “Novel efficiency of turmeric extract as a green inhibitor of low carbon steel corrosion in 3.5% NaCl solution,” Case Studies in Chemical and Environmental Engineering, vol. 11, Jun. 2025, doi: 10.1016/j.cscee.2024.101086.
[18] R. M. A. Shahba, A. E.-A. E.-S. Fouda, A. E.-S. El-Shenawy, and A. S. M. Osman, “Effect of Catharanthus roseus (Vince rosea) and Turmeric (Curcuma longa) Extracts as Green Corrosion Inhibitors for Mild Steel in 1 M HCl,” Materials Sciences and Applications, vol. 07, no. 10, pp. 654–671, 2016, doi: 10.4236/msa.2016.710053.
[19] F. Gapsari et al., “Analysis of corrosion inhibition of Kleinhovia hospita plant extract aided by quantification of hydrogen evolution using a GLCM/SVM method,” Int J Hydrogen Energy, vol. 48, no. 41, pp. 15392–15405, May 2023, doi: 10.1016/j.ijhydene.2023.01.067.
[20] B. Liao et al., “Fructus cannabis protein extract powder as a green and high effective corrosion inhibitor for Q235 carbon steel in 1 M HCl solution,” Int J Biol Macromol, vol. 239, p. 124358, 2023, doi: https://doi.org/10.1016/j.ijbiomac.2023.124358.
[21] F. Gapsari et al., “Efficacy of Andrographis paniculata leaf extract as a green corrosion inhibitor for mild steel in concentrated sulfuric acid: Experimental and computational insights,” Results in Surfaces and Interfaces, vol. 18, Jan. 2025, doi: 10.1016/j.rsurfi.2024.100361.
[22] H. Behloul et al., “New insights on the adsorption of CI-Reactive Red 141 dye using activated carbon prepared from the ZnCl2-treated waste cotton fibers: Statistical physics, DFT, COSMO-RS, and AIM studies,” J Mol Liq, vol. 364, Oct. 2022, doi: 10.1016/j.molliq.2022.119956.
[23] A. Guendouz et al., “New Benzimidazole Derivatives as Efficient Organic Inhibitors of mild steel Corrosion in Hydrochloric Acid Medium: Electrochemical, SEM/EDX, MC, and DFT Studies,” J Mol Struct, p. 139901, Feb. 2024, doi: 10.1016/j.molstruc.2024.139901.
[24] H. Zarrok et al., “Study of the inhibition of carbon steel corrosion by two pyridazin derivatives in 1 M HCl: Experimental study and theoretical approach✰,” Chemical Data Collections, vol. 51, Jun. 2024, doi: 10.1016/j.cdc.2024.101140.
[25] Y. Liu, J. Liu, B. Chen, and X. Ren, “Investigation of three betaine surfactants and KI compounds as a corrosion inhibitor on carbon steel in industrial pickling,” J Mol Struct, p. 141269, Jan. 2025, doi: 10.1016/j.molstruc.2024.141269.
[26] A. Elsamman, K. F. Khaled, S. A. Halim, and N. S. Abdelshafi, “Development of QSAR based GFA predictive model for the effective design of a new bispyrazole derivative corrosion inhibitor,” J Mol Struct, vol. 1293, Dec. 2023, doi: 10.1016/j.molstruc.2023.136230.
[27] R. Haldhar, D. Prasad, A. Saxena, and R. Kumar, “Experimental and theoretical studies of Ficus religiosa as green corrosion inhibitor for mild steel in 0.5 M H2SO4 solution,” Sustain Chem Pharm, vol. 9, pp. 95–105, Sep. 2018, doi: 10.1016/j.scp.2018.07.002.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Syarif Hidayatullah, Nasmi Herlina Sari, Maharsa Pradityatama, Suteja

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- The author grants the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-ShareAlike 4.0 International License