Analisis Pengaruh Pendinginan Udara Masuk Berbasis Thermoelectric Cooler terhadap Performa Mesin Sepeda Motor 110 cc
DOI:
https://doi.org/10.29407/jmn.v8i2.23548Keywords:
Air Fuel Ratio, Dyno Test, Pendinginan Udara Masuk, Performa Mesin, Thermoelectric CoolerAbstract
Penelitian ini bertujuan untuk menganalisis pengaruh penggunaan Thermoelectric Cooler (TEC) sebagai sistem pendingin udara masuk terhadap performa mesin sepeda motor 110 cc. Sistem TEC dipasang pada saluran intake manifold dan diuji menggunakan dynamometer test untuk membandingkan karakteristik mesin pada kondisi dengan dan tanpa pendinginan udara masuk. Parameter yang dianalisis meliputi daya, torsi, dan Air Fuel Ratio (AFR). Hasil pengujian menunjukkan bahwa pendinginan udara masuk menyebabkan penurunan nilai AFR sebesar sekitar 4,8%, yang mengindikasikan peningkatan densitas udara dan massa oksigen yang masuk ke ruang bakar. Perubahan tersebut berkontribusi pada peningkatan performa mesin, dengan daya maksimum mencapai 6,58 HP pada putaran 5600 rpm, atau meningkat sekitar 1,8 HP dibandingkan kondisi tanpa penggunaan TEC. Namun demikian, efektivitas pendinginan masih dibatasi oleh tingginya kecepatan aliran udara masuk, sehingga diperlukan pengembangan desain sistem pendingin yang lebih optimal pada penelitian selanjutnya.
Downloads
References
[1] N. R. Abdullah, H. Ismail, Z. Michael, A. A. Rahim, and H. Sharudin, “Jurnal Teknologi C ONSUMPTION AND E XHAUST E MISSIONS OF,” J. Teknol., vol. 9, pp. 25–29, 2015.
[2] D. Sumardiyanto and S. E. Susilowati, “Pengaruh Kondisi Udara Bilas Terhadap Kinerja Mesin Diesel,” J. Konversi Energi dan Manufaktur, vol. 2, pp. 81–88, 2017.
[3] P. Baskar and A. Senthilkumar, “Effects of oxygen enriched combustion on pollution and performance characteristics of a diesel engine,” Eng. Sci. Technol. an Int. J., vol. 19, no. 1, pp. 438–443, 2016, doi: 10.1016/j.jestch.2015.08.011.
[4] Z. Khalida, K. Dewi, S. Musyarrofah, and H. Rahmad, “OPTIMALIZATION OF INTEGRAL FIN TUBE IN OUTSIDE CONDENSATION BASED ON FLOODING ANGLE: OPTIMALISASI INTEGRAL FIN TUBE PADA SISTEM KONDENSASI LUAR BERDASARKAN FLOODING ANGLE,” J. Tek. Mesin, vol. 2, pp. 230–236, 2023, doi: 10.33795/j-meeg.v2i2.4731.
[5] H. Huang, S. Fu, P. Zhang, and L. Sun, “Design of a Small Temperature Control System Based on TEC,” Proc. - 2016 9th Int. Symp. Comput. Intell. Des. Isc. 2016, vol. 1, pp. 193–196, 2016, doi: 10.1109/ISCID.2016.1051.
[6] M. Algusri and D. Redantan, “Analysis of peltier characteristic and cold side treatment for thermoelectric generator module at brick kiln furnace,” Proc. - 2018 2nd Int. Conf. Electr. Eng. Informatics Towar. Most Effic. W. Mak. Deal. with Futur. Electr. Power Syst. Big Data Anal. ICon EEI 2018, no. October, pp. 134–139, 2018, doi: 10.1109/ICon-EEI.2018.8784141.
[7] I. B. Tijani, A. A. A. Al Hamadi, K. A. S. S. Al Naqbi, R. I. M. Almarzooqi, and N. K. S. R. Al Rahbi, “Development of an automatic solar-powered domestic water cooling system with multi-stage Peltier devices,” Renew. Energy, vol. 128, pp. 416–431, 2018, doi: 10.1016/j.renene.2018.05.042.
[8] H. Rahmad, Z. Khalida, and S. Arif, “ANALISA TRANSFER PANAS PADA KONDENSASI LUAR DENGAN MENGGUNAKAN REFRIGERANT R-134a,” J. Rekayasa Mesin, vol. 13, no. 2, pp. 383–391, Aug. 2022, doi: 10.21776/jrm.v13i2.998.
[9] M. Mirmanto, I. B. Alit, and Y. Anggani, “Fin-Fan Dan Single Fan Heat,” Rekayasa Mesin, no. February 2018, pp. 1–8, 2018.
[10] P. Kumar and A. Dhar, Basics of Thermodynamics. New Delhi: All India Councilfor Technical Education, 2020.
[11] J. H. Lienhard V and J. H. Lienhard IV, A Heat Transfer Textbook. Houston: Phlogiston Press, 2024.
[12] F. Incropera, D. DeWitt, T. Bergman, and A. Lavine, Fundamentals of Heat and Mass Transfer. 2007.
[13] E. Kuhn and L. Dresner, “The effect of fluctuations in the reaction widths on resonance integrals,” J. Nucl. Energy, vol. 7, pp. 69–70, 1958, doi: 10.1016/0891-3919(58)90232-8.
[14] D. M. Rowe, Thermoelectrics Handbook: Macro to Nano. Utah, USA: CRC Press, 2018. [Online]. Available: https://books.google.co.id/books?id=4yaNEQAAQBAJ
[15] J. B. Heywood, Internal Combustion Engine Fundamentals. USA: McGraw-Hill, 1988.
[16] S. B. Riffat and X. Ma, “Thermoelectrics: a review of present and potential applications,” Appl. Therm. Eng., vol. 23, no. 8, pp. 913–935, 2003, doi: https://doi.org/10.1016/S1359-4311(03)00012-7.
[17] W. W. Pulkrabek, Engineering Fundamentals of the Internal Combustion Engine. New Jersey: Pearson, 1997.
[18] K. Wang, C. Zhao, and Y. Cai, “Effect of Intake Air Humidification and EGR on Combustion and Emission Characteristics of Marine Diesel Engine at Advanced Injection Timing,” J. Therm. Sci., vol. 30, no. 4, pp. 1174–1186, 2021, doi: 10.1007/s11630-021-1460-1.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Zulfa Khalida, Hadi Rahmad, Yulia Puspa Dewi, Kartika Chandra Dewi, Eti Putranti

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- The author grants the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-ShareAlike 4.0 International License


