Optimasi Penugasan Menggunakan Metode Hungarian

Pada CV. L&J Express

  • Dwi Harini Universitas Nusantara PGRI Kediri
Abstract views: 299 , PDF downloads: 565
Keywords: Penugasan, Metode Hungarian, Waktu Pengantaran

Abstract

 

Assignment problems are a special form of linear programming problems that often occur in a company in allocating or placing a workforce that suits its ability. To solve the issue of assignment is to use Hungarian method. In applying the Hungarian method, the amount of labor assigned should be equal to the amount of work to be completed. The author uses Hungarian method to calculate the total delivery time of goods on CV. L & J Express Malang *) so as to get the optimal total delivery time. To solve the assignment problem on CV. L & J Express Malang, the required data includes employee name, destination location, and delivery time. Based on result of calculation using Hungarian method, obtained total delivery time of optimal goods equal to 105 minutes. Before using the Hungarian method the total delivery time of goods amounted to 119 minutes. It can be seen that there is a time efficiency of 14 minutes.

Downloads

Download data is not yet available.

References

Taha, A.H., Riset operasi, Edisi ke-5, Jilid 1, Jakarta: Binarupa Aksara.

Pangestu Subagyo, Marwan Asri, and T Hani Handoko, Dasar-dasar operation research, 1983.

Sri Mumpuni Ratnaningsih and Irhamah, Riset operasi teori dan aplikasi , ITSPRESS : Surabaya, 2011.

Idris Gautama So, Haryadi Sarjono and Robertus Tang Herman, Penerapan metode hungarian pada perusahaan jasa (kasus minimum). Management Departement School Of Business Management : BINUS University, Jakarta.

Erlinda Rahmawati, Neva Setyahadewi and Fransiska Frans, Optimalisasi masalah penugasan menggunakan metode hungarian ( studi kasus pada PT POS (persero) Pontianak), Jurusan Matematika FMIPA Untan Pontianak.

Published
2017-08-21
How to Cite
[1]
D. Harini, “Optimasi Penugasan Menggunakan Metode Hungarian: Pada CV. L&J Express”, intensif, vol. 1, no. 2, pp. 68-74, Aug. 2017.