Artificial Bee Colony-Based Optimization for Public Electric Vehicle Charging Station Placement

Authors

DOI:

https://doi.org/10.29407/intensif.v9i1.23918

Keywords:

Electric Vehicle Charging Stations, Artificial Bee Colony, Location Optimization, Central Jakarta

Abstract

Background: The urgency of developing Electric Vehicle Charging Stations (EVCS) infrastructure is increasing alongside the need for low-emission mobility and energy efficiency. Objective: This study aims to optimize the determination of EVCS locations using the Artificial Bee Colony (ABC) method. Methods: This method was selected for its capability to find optimal solutions through an iterative population-based approach. Simulations were conducted by limiting the maximum iterations to 1000 to evaluate the impact of iteration numbers on optimization quality. Results: The results show that the ABC method successfully identified the shortest distance from three initial locations to the optimal EVCS locations. In the second simulation, the shortest distance obtained was 0.6420 km, indicating that an increase in the number of iterations correlates directly with the quality of optimization results. Specifically, the optimal distance from the first initial location to the EVCS at Danareksa Tower was 1.7018 km using the ultra-fast charging type. From the second initial location to the EVCS at the Ministry of State-Owned Enterprises Building, the optimal distance was 0.6420 km using the fast-charging type. Meanwhile, from the third initial location to the EVCS at PLN UID Greater Jakarta, the optimal distance was 1.1787 km using the ultra-fast charging type. Conclusion: This study demonstrates that the ABC method can deliver accurate results in determining optimal EVCS locations with efficient distances. These findings are expected to support the development of more effective and integrated electric vehicle infrastructure.

Downloads

Download data is not yet available.

Author Biographies

  • Samsurizal, Institut Teknologi PLN

    Electrical Engineering, Institut Teknologi PLN

  • Agung Dwi Cahyo, Institut Teknologi PLN

    Electrical Engineering, Institut Teknologi PLN

  • Arif Nur Afandi, Universitas Negeri Malang

    Department of Electrical Engineering and Informatics, Universitas Negeri Malang

  • Andi Ahyina Ardina, Institut Teknologi PLN

    Electrical Engineering, Institut Teknologi PLN

       

     

     

  • Resi Kumala Sari, Yuan Ze University

    Departement Industrial Engineering and Management, Yuan Ze University

       

     

     

References

S. E. Comert and H. R. Yazgan, “A new approach based on hybrid ant colony optimization-artificial bee colony algorithm for multi-objective electric vehicle routing problems,” Eng. Appl. Artif. Intell., vol. 123, 2023, Art. no. 106375. doi: 10.1016/j.engappai.2023.106375. DOI: https://doi.org/10.1016/j.engappai.2023.106375

I. Prempeh, R. A. El-Sehiemy, A. K. Awopone, and P. N. Ayambire, “Optimal allocation and sizing of distributed generation and electric vehicle charging stations using artificial bee colony and particle swarm optimization algorithms,” in Proc. 23rd Int. Middle East Power Syst. Conf. (MEPCON), Dec. 2022, pp. 01–06. IEEE. doi: 10.1109/MEPCON55441.2022.10021807. DOI: https://doi.org/10.1109/MEPCON55441.2022.10021807

I. Utami, D. Yoesgiantoro, and N. A. Sasongko, “Implementasi Kebijakan Kendaraan Listrik Indonesia Untuk Mendukung Ketahanan Energi Nasional,” J. Ketahanan Energi, vol. 8, no. 1, pp. 49–65, 2022. [Online]. Available: https://jurnalprodi.idu.ac.id/index.php/KE/article/view/1149.

S. Ghosh and D. Chatterjee, “Artificial bee colony optimization based non-intrusive appliances load monitoring technique in a smart home,” IEEE Trans. Consum. Electron., vol. 67, no. 1, pp. 77–86, 2021. doi: 10.1109/TCE.2021.3051164. DOI: https://doi.org/10.1109/TCE.2021.3051164

C. Sudjoko, “Strategi Pemanfaatan Kendaraan Listrik Berkelanjutan Sebagai Solusi Untuk Mengurangi Emisi Karbon,” J. Paradig. J. Multidisipliner Mhs. Pascasarj. Indones., vol. 2, no. 2, pp. 54–68, 2021.

J. A. NishaliniDelcy, F. T. Josh, and R. Uthirasamy, “Review on Ant Colony Optimization and Partial Swarm Optimization Based Harmonic Elimination Method in Multilevel Inverters for EV Applications,” in Proc. 4th Int. Conf. Smart Electron. Commun. (ICOSEC), 2023, pp. 320–326. IEEE. doi: 10.1109/ICOSEC58147.2023.10276152. DOI: https://doi.org/10.1109/ICOSEC58147.2023.10276152

Government of The Republic of Indonesia, Peraturan Presiden Republik Indonesia No.55 Tahun 2019 tentang Percepatan Program Kendaraan Bermotor Listrik Berbasis Baterai (Battery Electric Vehicle) Untuk Transportasi Jalan, 2019.

Hyundai Indonesia, “Arus Masa Depan di Jalanan: Mobil Listrik di Indonesia.” [Online]. Available: https://www.hyundai.com/id/id/hyundai-story/articles/arus-masa-depan-di-jalanan-mobil-listrik-di-indonesia-0000000496.

D. Karaboga, “An Idea Based On Honey Bee Swarm For Numerical Optimization,” 2005.

PT PLN (Persero), Data Sekunder PT PLN (Persero) UID Jakarta Raya.pdf, 2024.

I. J. Jacob and P. E. Darney, “Artificial bee colony optimization algorithm for enhancing routing in wireless networks,” J. Artif. Intell. Capsule Netw., vol. 3, no. 1, pp. 62–71, 2021. doi: 10.36548/jaicn.2021.1.006. DOI: https://doi.org/10.36548/jaicn.2021.1.006

E. Kaya, B. Gorkemli, B. Akay, and D. Karaboga, “A review on the studies employing artificial bee colony algorithm to solve combinatorial optimization problems,” Eng. Appl. Artif. Intell., vol. 115, Art. no. 105311, 2022. doi: 10.1016/j.engappai.2022.105311. DOI: https://doi.org/10.1016/j.engappai.2022.105311

S. Famila, A. Jawahar, A. Sariga, and K. Shankar, “Improved artificial bee colony optimization based clustering algorithm for SMART sensor environments,” Peer-to-Peer Netw. Appl., vol. 13, no. 4, pp. 1071–1079, 2020. DOI: https://doi.org/10.1007/s12083-019-00805-4

M. S. Kiran, “A binary artificial bee colony algorithm and its performance assessment,” Expert Syst. Appl., vol. 175, Art. no. 114817, 2021. DOI: https://doi.org/10.1016/j.eswa.2021.114817

S. S. Muhammad Sidik et al., “Non-systematic weighted satisfiability in discrete hopfield neural network using binary artificial bee colony optimization,” Mathematics, vol. 10, no. 7, p. 1129, 2022. doi: 10.3390/math10071129. DOI: https://doi.org/10.3390/math10071129

H. Hakli, “The optimization of wind turbine placement using a binary artificial bee colony algorithm with multi-dimensional updates,” Electr. Power Syst. Res., vol. 216, Art. no. 109094, 2023. doi: 10.1016/j.epsr.2022.109094. DOI: https://doi.org/10.1016/j.epsr.2022.109094

J. H. Liang and C. H. Lee, “Efficient collision-free path-planning of multiple mobile robots system using efficient artificial bee colony algorithm,” Adv. Eng. Softw., vol. 79, pp. 47–56, 2015. doi: 10.1016/j.advengsoft.2014.09.006. DOI: https://doi.org/10.1016/j.advengsoft.2014.09.006

S. Yousefi, F. Derakhshan, H. S. Aghdasi, and H. Karimipour, “An energy-efficient artificial bee colony-based clustering in the internet of things,” Comput. Electr. Eng., vol. 86, Art. no. 106733, 2020. doi: 10.1016/j.compeleceng.2020.106733. DOI: https://doi.org/10.1016/j.compeleceng.2020.106733

H. U. R. Habib et al., “Energy cost optimization of hybrid renewables based V2G microgrid considering multi-objective function by using artificial bee colony optimization,” IEEE Access, vol. 8, pp. 62076–62093, 2020. DOI: https://doi.org/10.1109/ACCESS.2020.2984537

S. Singh and S. C. Kaushik, “Optimal sizing of grid integrated hybrid PV‐biomass energy system using artificial bee colony algorithm,” IET Renew. Power Gener., vol. 10, no. 5, pp. 642–650, 2016. DOI: https://doi.org/10.1049/iet-rpg.2015.0298

N. K. Kumar et al., “Fuzzy logic-based load frequency control in an island hybrid power system model using artificial bee colony optimization,” Energies, vol. 15, no. 6, p. 2199, 2022. DOI: https://doi.org/10.3390/en15062199

X. Yuan, P. Wang, Y. Yuan, Y. Huang, and X. Zhang, “A new quantum inspired chaotic artificial bee colony algorithm for optimal power flow problem,” Energy Convers. Manag., vol. 100, pp. 1–9, 2015. DOI: https://doi.org/10.1016/j.enconman.2015.04.051

U. Kılıç and K. Ayan, “Optimizing power flow of AC–DC power systems using artificial bee colony algorithm,” Int. J. Electr. Power Energy Syst., vol. 53, pp. 592–602, 2013. doi: 10.1016/j.ijepes.2013.05.036. DOI: https://doi.org/10.1016/j.ijepes.2013.05.036

K. Ayan and U. Kılıç, “Artificial bee colony algorithm solution for optimal reactive power flow,” Appl. Soft Comput., vol. 12, no. 5, pp. 1477–1482, 2012. doi: 10.1016/j.asoc.2012.01.006. DOI: https://doi.org/10.1016/j.asoc.2012.01.006

L. Le Dinh, D. Vo Ngoc, and P. Vasant, “Artificial bee colony algorithm for solving optimal power flow problem,” Sci. World J., vol. 2013, Art. no. 159040, 2013. doi: 10.1155/2013/159040. DOI: https://doi.org/10.1155/2013/159040

Y. Li, Y. Wang, and B. Li, “A hybrid artificial bee colony assisted differential evolution algorithm for optimal reactive power flow,” Int. J. Electr. Power Energy Syst., vol. 52, pp. 25–33, 2013. doi: 10.1016/j.ijepes.2013.03.016. DOI: https://doi.org/10.1016/j.ijepes.2013.03.016

M. I. Jarrah et al., “A novel explanatory hybrid artificial bee colony algorithm for numerical function optimization,” J. Supercomput., vol. 76, pp. 9330–9354, 2020. DOI: https://doi.org/10.1007/s11227-019-03083-2

A. Khorsandi, S. H. Hosseinian, and A. Ghazanfari, “Modified artificial bee colony algorithm based on fuzzy multi-objective technique for optimal power flow problem,” Electr. Power Syst. Res., vol. 95, pp. 206–213, 2013. doi: 10.1016/j.epsr.2012.09.002. DOI: https://doi.org/10.1016/j.epsr.2012.09.002

G. Pampará and A. P. Engelbrecht, “Binary artificial bee colony optimization,” in Proc. IEEE Symp. Swarm Intell., Paris, France, 2011, pp. 1–8. doi: 10.1109/SIS.2011.5952562. DOI: https://doi.org/10.1109/SIS.2011.5952562

D. Teodorovic, P. Lucic, G. Markovic, and M. D. Orco, “Bee colony optimization: Principles and applications,” in Proc. 8th Seminar Neural Netw. Appl. Electr. Eng. (NEUREL), Belgrade, Serbia, 2006, pp. 151–156. doi: 10.1109/NEUREL.2006.341200. DOI: https://doi.org/10.1109/NEUREL.2006.341200

S. Aslan, “A comparative study between artificial bee colony (ABC) algorithm and its variants on big data optimization,” Memetic Comput., vol. 12, pp. 129–150, 2020. doi: 10.1007/s12293-020-00298-2. DOI: https://doi.org/10.1007/s12293-020-00298-2

Downloads

PlumX Metrics

Published

2025-02-25

How to Cite

[1]
“Artificial Bee Colony-Based Optimization for Public Electric Vehicle Charging Station Placement”, INTENSIF: J. Ilm. Penelit. dan Penerap. Tek. Sist. Inf., vol. 9, no. 1, pp. 115–127, Feb. 2025, doi: 10.29407/intensif.v9i1.23918.