Analysis of CART and Random Forest on Statistics Student Status at Universitas Terbuka

Abstract views: 272 , PDF downloads: 226
Keywords: CART, Distance Learning, Ensemble, Machine Learning, Random Forest


CART and Random Forest are part of machine learning which is an essential part of the purpose of this research. CART is used to determine student status indicators, and Random Forest improves classification accuracy results. Based on the results of CART, three parameters can affect student status, namely the year of initial registration, number of rolls, and credits. Meanwhile, based on the classification accuracy results, RF can improve the accuracy performance on student status data with a difference in the percentage of CART by 1.44% in training data and testing data by 2.24%.


Download data is not yet available.


S. Hasanah and S. Permatasari, “Metode Klasifikasi Jaringan Syaraf Tiruan Backpropagation Pada Mahasiswa Statistika Universitas Terbuka,” vol. 14, no. 2, pp. 243–252, 2020, doi: 10.30598/barekengvol14iss2pp249-258.

S. H. Hasanah, "Multivariate Adaptive Regression Splines ( MARS ) for Modeling The Student Status at Universitas Terbuka," vol. 7, no. 1, pp. 51–58, 2021, doi:

C. D. Sutton, "Classification and Regression Trees, Bagging, and Boosting," Handb. Stat., vol. 24, no. 04, pp. 303–329, 2005, doi: 10.1016/S0169-7161(04)24011-1.

R. Maclin, "Popular Ensemble Methods : An Empirical Study Popular Ensemble Methods : An Empirical Study," J. Artif. Intell. Res., vol. 11, no. July, pp. 169–198, 2016.

M. van Wezel and R. Potharst, "Improved customer choice predictions using ensemble methods," Eur. J. Oper. Res., vol. 181, no. 1, pp. 436–452, 2007, doi: 10.1016/j.ejor.2006.05.029.

L. Breiman, "Bagging predictors," Mach. Learn., vol. 24, no. 2, pp. 123–140, 1996, doi: 10.1007/bf00058655.

H. Inoue and R. Inoue, "A very large platform for floating offshore facilities," Coast. Ocean Sp. Util. III. Proc. Symp. Genoa, 1993, pp. 533–551, 1995.

R. E. Schapire, "Explaining adaboost," Empir. Inference Festschrift Honor Vladimir N. Vapnik, pp. 37–52, 2013, doi: 10.1007/978-3-642-41136-6_5.

L. Breiman, "Random forests," Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001, doi: 10.1023/A:1010933404324.

A. Davies and Z. Ghahramani, "The Random Forest Kernel and other kernels for big data from random partitions," 2014, [Online]. Available:

R. Srivastava, A. N. Tiwari, and V. K. Giri, "Solar radiation forecasting using MARS, CART, M5, and random forest model: A case study for India," Heliyon, vol. 5, no. 10, p. e02692, 2019, doi: 10.1016/j.heliyon.2019.e02692.

E. A. Antipov and E. B. Pokryshevskaya, "Mass appraisal of residential apartments: An application of Random forest for valuation and a CART-based approach for model diagnostics," Expert Syst. Appl., vol. 39, no. 2, pp. 1772–1778, 2012, doi: 10.1016/j.eswa.2011.08.077.

J. Yu et al., "Ship arrival prediction and its value on daily container terminal operation," Ocean Eng., vol. 157, no. January, pp. 73–86, 2018, doi: 10.1016/j.oceaneng.2018.03.038.

R. Chairunisa, “Perbandingan CART dan Random Forest untuk Deteksi Kanker berbasis Klasifikasi Data Microarray,” vol. 1, no. 1, pp. 19–25, 2017.

N. Z. Zacharis, "Classification and regression trees (CART) for predictive modeling in blended learning," Int. J. Intell. Syst. Appl., vol. 10, no. 3, pp. 1–9, 2018, doi: 10.5815/ijisa.2018.03.01.

A. Hartati, I. Zain, and S. Suprih, “Kepala Rumah Tangga di Jawa Timur,” J. Sains Dan Seni Its, vol. 1, no. 1, pp. 101–105, 2012.

V. Y. Kullarni and P. K. Sinha, "Random Forest Classifier: A Survey and Future Research Directions," Int. J. Adv. Comput., vol. 36, no. 1, pp. 1144–1156, 2013.

PlumX Metrics

How to Cite
S. H. Hasanah and E. Julianti, “Analysis of CART and Random Forest on Statistics Student Status at Universitas Terbuka”, intensif, vol. 6, no. 1, pp. 56-65, Feb. 2022.