Pengaruh metode pemuatan karbohidrat pada peningkatan kinerja pelari amatir

Abstrak

Banyak pelari mengalami penurunan performa dan kelelahan dini, dipengaruhi oleh berbagai faktor, termasuk nutrisi. Hasil pengamatan menunjukkan tingkat kelelahan yang tinggi dan kebutuhan akan performa yang lebih di antara para pelari yang tergabung dalam komunitas lari di Makassar, terutama pelari pemula. Penelitian ini bertujuan untuk mengkaji pengaruh metode carbohydrate loading terhadap peningkatan kinerja komunitas pelari amatir di Makassar. Penelitian ini menggunakan desain eksperimental yang melibatkan 60 pelari dari komunitas pelari amatir di Makassar. Subjek dibagi menjadi dua kelompok: kelompok eksperimental yang menerapkan metode pemuatan karbohidrat dan kelompok kontrol yang mengikuti pola makan normal. Latihan untuk mengukur kinerja pelari Multistage fitness test (MFT) adalah instrumen untuk mengukur kinerja pelari. Teknik analisis data dengan uji-t (uji-t sampel berpasangan) untuk melihat perbedaan menggunakan spss versi 20. Analisis data menunjukkan peningkatan kinerja yang signifikan dengan metode aplikasi karbohidrat. Nilai kinerja rata-rata meningkat pada kelompok eksperimen menjadi 46,18 dibandingkan dengan kelompok kontrol menjadi 37,21. Peningkatan ini dapat dilihat dari nilai t yang dihitung sebesar 13,75. Jadi, metode pemuatan karbohidrat mempengaruhi kinerja. Metode carbohydrate loading merupakan strategi yang efektif untuk meningkatkan performa atlet lari, khususnya di komunitas pelari Makassar. Dengan penerapan yang tepat, metode ini dapat membantu pelari mencapai performa puncak, mengurangi kelelahan, dan meningkatkan efisiensi selama latihan dan kompetisi.

https://doi.org/10.29407/js_unpgri.v10i2.23063
PDF (English)

Referensi

Alghannam, A. F., Ghaith, M. M., & Alhussain, M. H. (2021). Regulation of energy substrate metabolism in endurance exercise. International Journal of Environmental Research and Public Health, 18(9), 4963. https://doi.org/10.3390/ijerph18094963.

Bauhaus, H., Erdogan, P., Braun, H., & Thevis, M. (2023). Continuous Glucose Monitoring (CGM) in Sports—A Comparison between a CGM Device and Lab-Based Glucose Analyser under Resting and Exercising Conditions in Athletes. International Journal of Environmental Research and Public Health, 20(15), 6440. https://doi.org/10.3390/ijerph20156440.

Boisseau, N., & Isacco, L. (2022). Substrate metabolism during exercise: Sexual dimorphism and women’s specificities. European Journal of Sport Science. https://doi.org/10.1080/17461391.2021.1943713.

Burke, L. M. (2021). Nutritional approaches to counter performance constraints in high-level sports competition. Experimental Physiology, 106(12), 2304–2323. https://doi.org/10.1113/EP088188

D’Souza, N. C., Kesibi, D., Yeung, C., Shakeri, D., D’Souza, A. I., Macpherson, A. K., & Riddell, M. C. (2023). The Impact of Sex, Body Mass Index, Age, Exercise Type and Exercise Duration on Interstitial Glucose Levels during Exercise. Sensors, 23(22). https://doi.org/10.3390/s23229059

Damayati, R. P. (2015). Carbohydrate Loading Meningkatkan Performa Olahraga. https://www.academia.edu/12234214/Carbohydrate_Loading_Meningkatkan_Performa_Pada_Olahraga.

Dorans, K. S., Bazzano, L. A., Qi, L., He, H., Appel, L. J., Samet, J. M., Chen, J., Mills, K. T., Nguyen, B. T., O'Brien, M. J., Uwaifo, G. I., & He, J. (2021). Low-carbohydrate dietary pattern on glycemic outcomes trial (ADEPT) among individuals with elevated hemoglobin A1c: study protocol for a randomized controlled trial. Trials, 22(1), 108. https://doi.org/10.1186/s13063-020-05001-x

Fadhiil, F., Syafriani, R., & Bahri, S. (2023). Analisis Pemberian Diet Carbohydrate Loading Terhadap Kadar Asam Laktat Darah, Kadar Glukosa Darah Dan Performa Atlet Rowing Jarak 2000 Meter. Jurnal Olahraga Kebugaran Dan Rehabilitasi (JOKER), 3(1), 82–90. https://doi.org/10.35706/joker.v3i1.8869

Feely, C., Caulfield, B., Lawlor, A., & Smyth, B. (2023). Modelling the training practices of recreational marathon runners to make personalised training recommendations. Proceedings of the 31st ACM Conference on User Modeling, Adaptation, and Personalization, pp. 183–193. DOI: https://doi.org/10.1145/3565472.3592952

Furber, M. J. W., Young, G. R., Holt, G. S., Pyle, S., Davison, G., Roberts, M. G., Roberts, J. D., Howatson, G., & Smith, D. L. (2022). Gut Microbial Stability is Associated with Greater Endurance Performance in Athletes Undertaking Dietary Periodization. MSystems, 7(3), e0012922. https://doi.org/10.1128/msystems.00129-22

Granero-Gallegos, A., González-Quílez, A., Plews, D., & Carrasco-Poyatos, M. (2020). HRV-Based Training for Improving VO2max in Endurance Athletes. A Systematic Review with Meta-Analysis. International Journal of Environmental Research and Public Health, 17(21). https://doi.org/10.3390/ijerph17217999

Hargreaves, M., & Spriet, L. L. (2020). Skeletal muscle energy metabolism during exercise. Nature Metabolism, 2(9), 817–828. https://doi.org/10.1038/s42255-020-0251-4

Hartoto, S., Firmansyah, A., & Prakoso, B. B. (2023). Kapasitas Fisik Dan Gizi Siswa-Atlet Di Sekolah Khusus Olahraga. Jawa Timur: Penerbit Uwais Inspirasi Indonesia.

Haryono, E., Slamet, M., & Septian, D. (2023). Statistika spss 28.

Hidayatulloh, R., & Widodo, A. (2020). Perbedaan Asupan Karbohidrat Dan Lemak Terhadap Kecepatan Sprint 100 Meter. Jurnal Kesehatan Olahraga, 8(3). https://ejournal.unesa.ac.id/index.php/jurnal-kesehatan-olahraga/article/view/34382

Hughes, R. L., & Holscher, H. D. (2021). Fueling Gut Microbes: A Review of the Interaction between Diet, Exercise, and the Gut Microbiota in Athletes. Advances in Nutrition (Bethesda, Md.), 12(6), 2190–2215. https://doi.org/10.1093/advances/nmab077

Hulett, N. A., Scalzo, R. L., & Reusch, J. E. B. (2022). Glucose uptake by skeletal muscle within the contexts of type 2 diabetes and exercise: an integrated approach. Nutrients, 14(3), 647. https://doi.org/10.3390/nu14030647

Hulton, A. T., Malone, J. J., Clarke, N. D., & Maclaren, D. P. M. (2022). Energy Requirements and Nutritional Strategies for Male Soccer Players: A Review and Suggestions for Practice. Nutrients, 14(3), 1–27. https://doi.org/10.3390/nu14030657

Hulton, A. T., Vitzel, K., Doran, D. A., & MacLaren, D. P. M. (2020). Addition of Caffeine to a Carbohydrate Feeding Strategy Prior to Intermittent Exercise. International Journal of Sports Medicine, 41(9), 603–609. https://doi.org/10.1055/a-1121-7817

Husnul, D. (2024). Efektifitas Penggunaan Metode Karbohidrat Loading Pada Atlet Sepak Bola Ssfc Unm. Korsa; Jurnal Kajian Ilmu Keolahragaan Dan Kesehatan, 3(1), 37–40. https://journal.unm.ac.id/index.php/korsa/article/view/2807

Iwayama, K., Tanabe, Y., Yajima, K., Tanji, F., Oni shi, T., & Takahashi, H. (2023). Preexercise high-fat meal following carbohydrate loading attenuates glycogen utilization during endurance exercise in male recreational runners. The Journal of Strength & Conditioning Research, 37(3), https://doi.org/10.1519/JSC.0000000000004311 .

Kelly, V. G., Oliver, L. S., Bowtell, J., & Jenkins, D. G. (2021). Inside the Belly of a Beast: Individualizing Nutrition for Young, Professional Male Rugby League Players: A Review. International Journal of Sport Nutrition and Exercise Metabolism, 31(1), 73–89. https://doi.org/10.1123/ijsnem.2019-0321

King, A. J., Etxebarria, N., Ross, M. L., Garvican-Lewis, L., Heikura, I. A., McKay, A. K. A., Tee, N., Forbes, S. F., Beard, N. A., Saunders, P. U., Sharma, A. P., Gaskell, S. K., Costa, R. J. S., & Burke, L. M. (2022). Short-Term Very High Carbohydrate Diet and Gut-Training Have Minor Effects on Gastrointestinal Status and Performance in Highly Trained Endurance Athletes. Nutrients, 14(9). https://doi.org/10.3390/nu14091929

König, D., Braun, H., Carlsohn, A., Großhauser, M., Lampen, A., Mosler, S., Nieß, A., Oberritter, H., Schäbethal, K., & Schek, A. (2019). Carbohydrates in sports nutrition. Position of the working group sports nutrition of the German Nutrition Society (DGE). Ernahrungs Umschau, 66(11), 228–235. https://doi.org/10.4455/eu.2019.044

Lawler, T. P., & Cialdella-Kam, L. (2020). Non-carbohydrate Dietary Factors and Their Influence on Post-Exercise Glycogen Storage: a Review. Current Nutrition Reports, 9(4), 394–404. https://doi.org/10.1007/s13668-020-00335-z

Lockie, R. G., Dawes, J. J., Moreno, M. R., Cesario, K. A., Balfany, K., Stierli, M., Dulla, J. M., & Orr, R. M. (2021). Relationship between the 20-m multistage fitness test and 2.4-km run in law enforcement recruits. The Journal of Strength & Conditioning Research, 35(10), 2756–2761. https://doi.org/10.1519/JSC.0000000000003217

Marsuna, Hudain, M. A., & Heriansyah. (2024). Aerobic training as an approach to increasing VO2max in amateur football athletes. Journal Sport Area, 9(2), 207–216. https://doi.org/10.25299/sportarea.2024.vol9(2).15338

Michalczyk, M. M., Chycki, J., Zajac, A., Maszczyk, A., Zydek, G., & Langfort, J. (2019). Anaerobic Performance after a Low-Carbohydrate Diet (LCD) Followed by 7 Days of Carbohydrate Loading in Male Basketball Players. Nutrients, 11(4). https://doi.org/10.3390/nu11040778

Millah, H. (2019). Penjelasan Karbohidrat Loading. Pendidikan Jasmani Universitas Siliwangi. https://penjas.unsil.ac.id/2019/05/penjelasan-karbohidrat-loading/

Moreno-Cabañas, A., & Gonzalez, J. T. (2023). Role of prior feeding status in mediating the effects of exercise on blood glucose kinetics. American Journal of Physiology-Cell Physiology, 325(4), C823–C832. https://doi.org/10.1152/ajpcell.00271.2023

Muscella, A., Stefàno, E., Lunetti, P., Capobianco, L., & Marsigliante, S. (2020). The regulation of fat metabolism during aerobic exercise. Biomolecules, 10(12), 1699. doi: 10.3390/biom10121699

Parmar, A., Jones, T. W., & Hayes R., P. (2021). The dose-response relationship between interval-training and VO2max in well-trained endurance runners: A systematic review. Journal of Sports Sciences, 39(12), 1410–1427. https://doi.org/10.1080/02640414.2021.1876313

Podlogar, T., & Wallis, G. A. (2022). New horizons in carbohydrate research and application for endurance athletes. Sports Medicine, 52(Suppl 1), 5–23. https://doi.org/10.1007/s40279-022-01757-1

Quinn, C. P., McDougall, R. M., Aboodarda, S. J., Murias, J. M., & MacInnis, M. J. (2024). Effects of carbohydrate availability on cycling endurance at the maximal lactate steady state. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 326(3), R266–R275. https://doi.org/10.1152/ajpregu.00178.2023

Sepriadi, S. (2019). Pembinaan Kebugaran Jasmani: Sebagai Suatu Pengantar. Depok: PT. Rajagrafindo Persada

Shandi, S. A., Furkan, F., & Yanti, S. (2021). Tingkat Pemahaman Kebutuhan Asupan Gizi Atlet Lari Jarak Jauh. Jurnal Pendidikan Olahraga, 11(2), 16–19. https://doi.org/10.37630/jpo.v11i2.526

Shiose, K., Takahashi, H., & Yamada, Y. (2022). Muscle Glycogen Assessment and Relationship with Body Hydration Status: A Narrative Review. Nutrients, 15(1). https://doi.org/10.3390/nu15010155

Soo, J., Raman, A., Lawler, N. G., Goods, P. S. R., Deldicque, L., Girard, O., & Fairchild, T. J. (2023). The role of exercise and hypoxia on glucose transport and regulation. European Journal of Applied Physiology, 123(6), 1147–1165. https://doi.org/10.1007/s00421-023-05135-1

Wigati, W. W., Ali, M. A., Kurniawati, D. M., & Anggita, G. M. (2022). Analisis Hubungan Makronutrisi Dengan Daya Tahan Kardiorespiratori, Kecepatan, Dan Kekuatan Otot Tungkai Pada Atlet Lari Amatir. Majalah Kesehatan, 9(3), 151–158. https://doi.org/10.21776/majalahkesehatan.2022.009.03.4

Wilson, P. (2022). Sports Supplements and the Athlete's Gut: A Review. International Journal of Sports Medicine, 43(10), 840–849. https://doi.org/10.1055/a-1704-3086

Xianglin, K., Pengcheng, G., Weilong, W., Rusanova, O., & Diachenko, A. (2020). Planning special physical training for rowers in China: a randomized study. Journal of Physical Education and Sport, 20(4), 1688–1694. https://doi.org/10.7752/jpes.2020.04229

##submission.license.cc.by-sa4.footer##

##submission.copyrightStatement##

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##