Faktor neurotrofik yang diturunkan dari otak dalam darah meningkat sementara setelah sesi tunggal latihan intensitas sedang pada wanita gemuk

Abstrak

This study aimed to analyze the increase in serum BDNF levels after moderate-intensity exercise in obese females. This study used the True-Experimental method with the Randomized Control Group Pre-test-Post-test design. A total of 14 obese female adolescents aged 19-24 years participated in this study and were divided into two groups, i.e., the control group (CG, n=7) and the moderate-intensity exercise group (MIEG, n=7). The exercise was performed with an intensity of 64 – 76 HRmax for 40 minutes using a Richter Treadmill (4.0 HP DC). Moderate-intensity exercise was carried out in one intervention. Blood sampling was carried out before and after moderate-intensity exercise on the cubital vein as much as 3 ml. Examination of serum BDNF levels using the ELISA method.  The results of statistical analysis show that the mean pre-test serum BDNF levels were CG (258.66±27.11 pg/mL), MIEG (252.48±23.17 pg/mL), and (p=0.865). The mean post-test serum BDNF levels were CG (236.22±20.83 pg/mL), MIEG (497.73±59.55 pg/mL), and (p=0.001). The mean delta of serum BDNF levels on CG (-22.43±26.04), MIEG (245.25±61.57 pg/mL), and (p=0.002). Based on the study results, it is concluded that a single session of moderate-intensity exercise in the morning increases serum BDNF levels in obese females. 

https://doi.org/10.29407/js_unpgri.v7i3.16372
PDF (English)
Similarity check (English)

Referensi

Alomari, M. A., Khabour, O. F., Alawneh, K., Alzoubi, K. H., & Maikano, A. B. (2020). The importance of physical fitness for the relationship of BDNF with obesity measures in young normal-weight adults. Heliyon, 6(3), e03490. https://doi.org/10.1016/j.heliyon.2020.e03490.

Antunes, B. M., Rossi, F. E., Teixeira, A. M., & Lira, F. S. (2020). Short-time high-intensity exercise increases peripheral BDNF in a physical fitness-dependent way in healthy men. European journal of sport science, 20(1), 43–50. https://doi.org/10.1080/17461391.2019.1611929.

Atake, K., Nakamura, T., Ueda, N., Hori, H., Katsuki, A., & Yoshimura, R. (2018). The impact of aging, psychotic symptoms, medication, and brain-derived neurotrophic factor on cognitive impairment in Japanese chronic schizophrenia patients. Frontiers in psychiatry, 9, 232. https://doi.org/10.3389/fpsyt.2018.00232.

Bathina, S., & Das, U. N. (2015). Brain-derived neurotrophic factor and its clinical implications. Archives of medical science : AMS, 11(6), 1164–1178. https://doi.org/10.5114/aoms.2015.56342.

Briken, S., Rosenkranz, S. C., Keminer, O., Patra, S., Ketels, G., Heesen, C., Hellweg, R., Pless, O., Schulz, K. H., & Gold, S. M. (2016). Effects of exercise on Irisin, BDNF and IL-6 serum levels in patients with progressive multiple sclerosis. Journal of Neuroimmunology, 299, 53–58. https://doi.org/10.1016/j.jneuroim.2016.08.007.

Buchman, A. S., Yu, L., Boyle, P. A., Schneider, J. A., De Jager, P. L., & Bennett, D. A. (2016). Higher brain BDNF gene expression is associated with slower cognitive decline in older adults. Neurology, 86(8), 735–741. https://doi.org/10.1212/WNL.0000000000002387.

Busutil, R., Espallardo, O., Torres, A., Martínez-Galdeano, L., Zozaya, N., & Hidalgo-Vega, Á. (2017). The impact of obesity on health-related quality of life in Spain. Health and quality of life outcomes, 15(1), 197. https://doi.org/10.1186/s12955-017-0773-y.

Cho, H. C., Kim, J., Kim, S., Son, Y. H., Lee, N., & Jung, S. H. (2012). The concentrations of serum, plasma and platelet BDNF are all increased by treadmill VO₂max performance in healthy college men. Neuroscience letters, 519(1), 78–83. https://doi.org/10.1016/j.neulet.2012.05.025.

Cook, R. L., O'Dwyer, N. J., Donges, C. E., Parker, H. M., Cheng, H. L., Steinbeck, K. S., Cox, E. P., Franklin, J. L., Garg, M. L., Rooney, K. B., & O'Connor, H. T. (2017). Relationship between Obesity and cognitive function in young women: The Food, Mood and Mind Study. Journal of Obesity, 2017, 5923862. https://doi.org/10.1155/2017/5923862.

de Oliveira, C., de Freitas, J. S., Macedo, I. C., Scarabelot, V. L., Ströher, R., Santos, D. S., Souza, A., Fregni, F., Caumo, W., & Torres, I. (2019). Transcranial direct current stimulation (tDCS) modulates biometric and inflammatory parameters and anxiety-like behavior in obese rats. Neuropeptides, 73, 1–10. https://doi.org/10.1016/j.npep.2018.09.006.

Dinoff, A., Herrmann, N., Swardfager, W., Liu, C. S., Sherman, C., Chan, S., & Lanctôt, K. L. (2016). The effect of exercise training on resting concentrations of peripheral brain-derived neurotrophic factor (BDNF): A Meta-Analysis. PloS one, 11(9), e0163037. https://doi.org/10.1371/journal.pone.0163037.

Domínguez-Sanchéz, M. A., Bustos-Cruz, R. H., Velasco-Orjuela, G. P., Quintero, A. P., Tordecilla-Sanders, A., Correa-Bautista, J. E., Triana-Reina, H. R., García-Hermoso, A., González-Ruíz, K., Peña-Guzmán, C. A., Hernández, E., Peña-Ibagon, J. C., Téllez-T, L. A., Izquierdo, M., & Ramírez-Vélez, R. (2018). Acute effects of high intensity, resistance, or combined protocol on the Increase of level of neurotrophic factors in physically inactive overweight adults: The brainFit study. Frontiers in physiology, 9, 741. https://doi.org/10.3389/fphys.2018.00741.

Gadde, K. M., Martin, C. K., Berthoud, H. R., & Heymsfield, S. B. (2018). Obesity: pathophysiology and management. Journal of the American College of Cardiology, 71(1), 69–84. https://doi.org/10.1016/j.jacc.2017.11.011.

Goldfield, G. S., Kenny, G. P., Prud'homme, D., Holcik, M., Alberga, A. S., Fahnestock, M., Cameron, J. D., Doucette, S., Hadjiyannakis, S., Tulloch, H., Tremblay, M. S., Walsh, J., Guerin, E., Gunnell, K. E., D'Angiulli, A., & Sigal, R. J. (2018). Effects of aerobic training, resistance training, or both on brain-derived neurotrophic factor in adolescents with obesity: The hearty randomized controlled trial. Physiology & behavior, 191, 138–145. https://doi.org/10.1016/j.physbeh.2018.04.026.

Inoue, D. S., Monteiro, P. A., Gerosa-Neto, J., Santana, P. R., Peres, F. P., Edwards, K. M., & Lira, F. S. (2020). Acute increases in brain-derived neurotrophic factor following high or moderate-intensity exercise is accompanied with better cognition performance in obese adults. Scientific reports, 10(1), 13493. https://doi.org/10.1038/s41598-020-70326-1.

Jiménez-Maldonado, A., Rentería, I., García-Suárez, P. C., Moncada-Jiménez, J., & Freire-Royes, L. F. (2018). The impact of high-intensity interval training on brain derived neurotrophic factor in brain: a mini-review. Frontiers in neuroscience, 12, 839. https://doi.org/10.3389/fnins.2018.00839.

Karri, S., Sharma, S., Hatware, K., & Patil, K. (2019). Natural anti-obesity agents and their therapeutic role in management of obesity: A future trend perspective. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 110, 224–238. https://doi.org/10.1016/j.biopha.2018.11.076.

Konishi, K., Cherkerzian, S., Aroner, S., Jacobs, E. G., Rentz, D. M., Remington, A., Aizley, H., Hornig, M., Klibanski, A., & Goldstein, J. M. (2020). Impact of BDNF and sex on maintaining intact memory function in early midlife. Neurobiology of aging, 88, 137–149. https://doi.org/10.1016/j.neurobiolaging.2019.12.014.

Kraemer, R.R., Shockett, P., Webb, N.D., Shah, U. and Castracane, V.D. (2014). A transient elevated irisin blood concentration in response to prolonged, moderate aerobic exercise in young men and women. Hormone and Metabolic Research, 46(2), 150–154. https://doi.org/10.1055/s-0033-1355381.

Lee, S. M., Kim, B. K., Kim, T. W., Ji, E. S., & Choi, H. H. (2016). Music application alleviates short-term memory impairments through increasing cell proliferation in the hippocampus of valproic acid-induced autistic rat pups. Journal of exercise rehabilitation, 12(3), 148–155. https://doi.org/10.12965/jer.1632638.319.

Marquez, C.M.S., Vanaudenaerde, B., Troosters, T., & Wenderoth, N. (2015). High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise. Journal of applied physiology (Bethesda, Md. : 1985), 119(12), 1363–1373. https://doi.org/10.1152/japplphysiol.00126.2015.

Mustroph, M. L., Merritt, J. R., Holloway, A. L., Pinardo, H., Miller, D. S., Kilby, C. N., Bucko, P., Wyer, A., & Rhodes, J. S. (2015). Increased adult hippocampal neurogenesis is not necessary for wheel running to abolish conditioned place preference for cocaine in mice. The European journal of neuroscience, 41(2), 216–226. https://doi.org/10.1111/ejn.12782.

NCD Risk Factor Collaboration (NCD-RisC) (2016). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet (London, England), 387(10026), 1377–1396. https://doi.org/10.1016/S0140-6736(16)30054-X.

Nursalam (2003). Konsep dan penerapan metodologi penelitian ilmu keperawatan pedoman skripsi, tesis dan instrumen penelitian keperawatan. Jakarta : Salemba Medika.

Nygaard, H., Nygaard, H., Slettalokken, G., Vegge, G., Hollan, I., Whist, J.E., Strand, T., Ronnestad, B.R. & Ellefsen, S. (2015). Irisin in blood increases transiently after single sessions of intense endurance exercise and heavy strength training. PLOS ONE, 10(3), 1–12. https://doi.org/10.1371/journal.pone.0121367.

Perosa, V., Priester, A., Ziegler, G., Cardenas-Blanco, A., Dobisch, L., Spallazzi, M., Assmann, A., Maass, A., Speck, O., Oltmer, J., Heinze, H. J., Schreiber, S., & Düzel, E. (2020). Hippocampal vascular reserve associated with cognitive performance and hippocampal volume. Brain : a journal of neurology, 143(2), 622–634. https://doi.org/10.1093/brain/awz383.

Pranoto, A., Wahyudi, E., Prasetya, R.E., Fauziyah, S. Kinanti, R.G., Sugiharto, S., & Rejeki, P.S. (2020). High intensity exercise increases brain derived neurotrophic factor expression and number of hippocampal neurons in rats. Comparative Exercise Physiology, 16(4), 325-332. https://doi.org/10.3920/CEP190063.

Pugazhenthi, S., Qin, L., & Reddy, P. H. (2017). Common neurodegenerative pathways in obesity, diabetes, and Alzheimer's disease. Biochimica et biophysica acta. Molecular basis of disease, 1863(5), 1037–1045. https://doi.org/10.1016/j.bbadis.2016.04.017.

Rasmussen, P., Brassard, P., Adser, H., Pedersen, M. V., Leick, L., Hart, E., Secher, N. H., Pedersen, B. K., & Pilegaard, H. (2009). Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Experimental physiology, 94(10), 1062–1069. https://doi.org/10.1113/expphysiol.2009.048512.

Rejeki, P.S., Pranoto, A., Prasetya, R.E., & Sugiharto. (2021). Irisin serum increasing pattern is higher at moderate-intensity continuous exercise than at moderate-intensity interval exercise in obese females. Comparative Exercise Physiology. Article In Press. https://doi.org/10.3920/CEP200050.

Riskesdas. 2018. Laporan Nasional Riset Kesehatan Dasar. Jakarta: Kemenkes RI. Available at: http://www.kesmas.kemkes.go.id.

Rodriguez, A. L., Whitehurst, M., Fico, B. G., Dodge, K. M., Ferrandi, P. J., Pena, G., Adelman, A., & Huang, C. J. (2018). Acute high-intensity interval exercise induces greater levels of serum brain-derived neurotrophic factor in obese individuals. Experimental biology and medicine (Maywood, N.J.), 243(14), 1153–1160. https://doi.org/10.1177/1535370218812191.

Sleiman, S. F., Henry, J., Al-Haddad, R., El Hayek, L., Abou Haidar, E., Stringer, T., Ulja, D., Karuppagounder, S. S., Holson, E. B., Ratan, R. R., Ninan, I., & Chao, M. V. (2016). Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. eLife, 5, e15092. https://doi.org/10.7554/eLife.15092.

Szuhany, K. L., Bugatti, M., & Otto, M. W. (2015). A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. Journal of psychiatric research, 60, 56–64. https://doi.org/10.1016/j.jpsychires.2014.10.003.

Tsai, C. L., Pan, C. Y., Chen, F. C., Wang, C. H., & Chou, F. Y. (2016). Effects of acute aerobic exercise on a task-switching protocol and brain-derived neurotrophic factor concentrations in young adults with different levels of cardiorespiratory fitness. Experimental physiology, 101(7), 836–850. https://doi.org/10.1113/EP085682.

van Praag, H., Shubert, T., Zhao, C., & Gage, F. H. (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. The Journal of neuroscience : the official journal of the Society for Neuroscience, 25(38), 8680–8685. https://doi.org/10.1523/JNEUROSCI.1731-05.2005.

Wang, C., Chan, J. S., Ren, L., & Yan, J. H. (2016). Obesity Reduces Cognitive and Motor Functions across the Lifespan. Neural plasticity, 2016, 2473081. https://doi.org/10.1155/2016/2473081.

Wang, R., & Holsinger, R. (2018). Exercise-induced brain-derived neurotrophic factor expression: Therapeutic implications for Alzheimer's dementia. Ageing research reviews, 48, 109–121. https://doi.org/10.1016/j.arr.2018.10.002.

Widyanto, T., & Hermanto, T. J. (2013). Perbandingan Kadar Brain Derived Neurotrophic Factor (BDNF) Serum Darah Tali Pusat Bayi Baru Lahir antara Ibu Hamil yang Mendapat DHA dengan Kombinasi DHA dan 11-14 Karya Mozart Selama Hamil. Majalah Obstetri & Ginekologi, 21, 109–114.

World Health Organization (WHO). 2016. Obesity and overweight. Geneva: WHO Press. Diakses 04 Juli 2021 dalam http://www.who.int/mediacentre/factsheets/fs311/en/.

Zhang, X. Y., Tan, Y. L., Chen, D. C., Tan, S. P., Yang, F. D., Wu, H. E., Zunta-Soares, G. B., Huang, X. F., Kosten, T. R., & Soares, J. C. (2016). Interaction of BDNF with cytokines in chronic schizophrenia. Brain, behavior, and immunity, 51, 169–175. https://doi.org/10.1016/j.bbi.2015.09.014.

##submission.license.cc.by-sa4.footer##

##submission.copyrightStatement##

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##