Abstrak
This study aimed to analyze the increase in serum BDNF levels after moderate-intensity exercise in obese females. This study used the True-Experimental method with the Randomized Control Group Pre-test-Post-test design. A total of 14 obese female adolescents aged 19-24 years participated in this study and were divided into two groups, i.e., the control group (CG, n=7) and the moderate-intensity exercise group (MIEG, n=7). The exercise was performed with an intensity of 64 – 76 HRmax for 40 minutes using a Richter Treadmill (4.0 HP DC). Moderate-intensity exercise was carried out in one intervention. Blood sampling was carried out before and after moderate-intensity exercise on the cubital vein as much as 3 ml. Examination of serum BDNF levels using the ELISA method. The results of statistical analysis show that the mean pre-test serum BDNF levels were CG (258.66±27.11 pg/mL), MIEG (252.48±23.17 pg/mL), and (p=0.865). The mean post-test serum BDNF levels were CG (236.22±20.83 pg/mL), MIEG (497.73±59.55 pg/mL), and (p=0.001). The mean delta of serum BDNF levels on CG (-22.43±26.04), MIEG (245.25±61.57 pg/mL), and (p=0.002). Based on the study results, it is concluded that a single session of moderate-intensity exercise in the morning increases serum BDNF levels in obese females.
Referensi
Alomari, M. A., Khabour, O. F., Alawneh, K., Alzoubi, K. H., & Maikano, A. B. (2020). The importance of physical fitness for the relationship of BDNF with obesity measures in young normal-weight adults. Heliyon, 6(3), e03490. https://doi.org/10.1016/j.heliyon.2020.e03490.
Antunes, B. M., Rossi, F. E., Teixeira, A. M., & Lira, F. S. (2020). Short-time high-intensity exercise increases peripheral BDNF in a physical fitness-dependent way in healthy men. European journal of sport science, 20(1), 43–50. https://doi.org/10.1080/17461391.2019.1611929.
Atake, K., Nakamura, T., Ueda, N., Hori, H., Katsuki, A., & Yoshimura, R. (2018). The impact of aging, psychotic symptoms, medication, and brain-derived neurotrophic factor on cognitive impairment in Japanese chronic schizophrenia patients. Frontiers in psychiatry, 9, 232. https://doi.org/10.3389/fpsyt.2018.00232.
Bathina, S., & Das, U. N. (2015). Brain-derived neurotrophic factor and its clinical implications. Archives of medical science : AMS, 11(6), 1164–1178. https://doi.org/10.5114/aoms.2015.56342.
Briken, S., Rosenkranz, S. C., Keminer, O., Patra, S., Ketels, G., Heesen, C., Hellweg, R., Pless, O., Schulz, K. H., & Gold, S. M. (2016). Effects of exercise on Irisin, BDNF and IL-6 serum levels in patients with progressive multiple sclerosis. Journal of Neuroimmunology, 299, 53–58. https://doi.org/10.1016/j.jneuroim.2016.08.007.
Buchman, A. S., Yu, L., Boyle, P. A., Schneider, J. A., De Jager, P. L., & Bennett, D. A. (2016). Higher brain BDNF gene expression is associated with slower cognitive decline in older adults. Neurology, 86(8), 735–741. https://doi.org/10.1212/WNL.0000000000002387.
Busutil, R., Espallardo, O., Torres, A., Martínez-Galdeano, L., Zozaya, N., & Hidalgo-Vega, Á. (2017). The impact of obesity on health-related quality of life in Spain. Health and quality of life outcomes, 15(1), 197. https://doi.org/10.1186/s12955-017-0773-y.
Cho, H. C., Kim, J., Kim, S., Son, Y. H., Lee, N., & Jung, S. H. (2012). The concentrations of serum, plasma and platelet BDNF are all increased by treadmill VO₂max performance in healthy college men. Neuroscience letters, 519(1), 78–83. https://doi.org/10.1016/j.neulet.2012.05.025.
Cook, R. L., O'Dwyer, N. J., Donges, C. E., Parker, H. M., Cheng, H. L., Steinbeck, K. S., Cox, E. P., Franklin, J. L., Garg, M. L., Rooney, K. B., & O'Connor, H. T. (2017). Relationship between Obesity and cognitive function in young women: The Food, Mood and Mind Study. Journal of Obesity, 2017, 5923862. https://doi.org/10.1155/2017/5923862.
de Oliveira, C., de Freitas, J. S., Macedo, I. C., Scarabelot, V. L., Ströher, R., Santos, D. S., Souza, A., Fregni, F., Caumo, W., & Torres, I. (2019). Transcranial direct current stimulation (tDCS) modulates biometric and inflammatory parameters and anxiety-like behavior in obese rats. Neuropeptides, 73, 1–10. https://doi.org/10.1016/j.npep.2018.09.006.
Dinoff, A., Herrmann, N., Swardfager, W., Liu, C. S., Sherman, C., Chan, S., & Lanctôt, K. L. (2016). The effect of exercise training on resting concentrations of peripheral brain-derived neurotrophic factor (BDNF): A Meta-Analysis. PloS one, 11(9), e0163037. https://doi.org/10.1371/journal.pone.0163037.
Domínguez-Sanchéz, M. A., Bustos-Cruz, R. H., Velasco-Orjuela, G. P., Quintero, A. P., Tordecilla-Sanders, A., Correa-Bautista, J. E., Triana-Reina, H. R., García-Hermoso, A., González-Ruíz, K., Peña-Guzmán, C. A., Hernández, E., Peña-Ibagon, J. C., Téllez-T, L. A., Izquierdo, M., & Ramírez-Vélez, R. (2018). Acute effects of high intensity, resistance, or combined protocol on the Increase of level of neurotrophic factors in physically inactive overweight adults: The brainFit study. Frontiers in physiology, 9, 741. https://doi.org/10.3389/fphys.2018.00741.
Gadde, K. M., Martin, C. K., Berthoud, H. R., & Heymsfield, S. B. (2018). Obesity: pathophysiology and management. Journal of the American College of Cardiology, 71(1), 69–84. https://doi.org/10.1016/j.jacc.2017.11.011.
Goldfield, G. S., Kenny, G. P., Prud'homme, D., Holcik, M., Alberga, A. S., Fahnestock, M., Cameron, J. D., Doucette, S., Hadjiyannakis, S., Tulloch, H., Tremblay, M. S., Walsh, J., Guerin, E., Gunnell, K. E., D'Angiulli, A., & Sigal, R. J. (2018). Effects of aerobic training, resistance training, or both on brain-derived neurotrophic factor in adolescents with obesity: The hearty randomized controlled trial. Physiology & behavior, 191, 138–145. https://doi.org/10.1016/j.physbeh.2018.04.026.
Inoue, D. S., Monteiro, P. A., Gerosa-Neto, J., Santana, P. R., Peres, F. P., Edwards, K. M., & Lira, F. S. (2020). Acute increases in brain-derived neurotrophic factor following high or moderate-intensity exercise is accompanied with better cognition performance in obese adults. Scientific reports, 10(1), 13493. https://doi.org/10.1038/s41598-020-70326-1.
Jiménez-Maldonado, A., Rentería, I., García-Suárez, P. C., Moncada-Jiménez, J., & Freire-Royes, L. F. (2018). The impact of high-intensity interval training on brain derived neurotrophic factor in brain: a mini-review. Frontiers in neuroscience, 12, 839. https://doi.org/10.3389/fnins.2018.00839.
Karri, S., Sharma, S., Hatware, K., & Patil, K. (2019). Natural anti-obesity agents and their therapeutic role in management of obesity: A future trend perspective. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 110, 224–238. https://doi.org/10.1016/j.biopha.2018.11.076.
Konishi, K., Cherkerzian, S., Aroner, S., Jacobs, E. G., Rentz, D. M., Remington, A., Aizley, H., Hornig, M., Klibanski, A., & Goldstein, J. M. (2020). Impact of BDNF and sex on maintaining intact memory function in early midlife. Neurobiology of aging, 88, 137–149. https://doi.org/10.1016/j.neurobiolaging.2019.12.014.
Kraemer, R.R., Shockett, P., Webb, N.D., Shah, U. and Castracane, V.D. (2014). A transient elevated irisin blood concentration in response to prolonged, moderate aerobic exercise in young men and women. Hormone and Metabolic Research, 46(2), 150–154. https://doi.org/10.1055/s-0033-1355381.
Lee, S. M., Kim, B. K., Kim, T. W., Ji, E. S., & Choi, H. H. (2016). Music application alleviates short-term memory impairments through increasing cell proliferation in the hippocampus of valproic acid-induced autistic rat pups. Journal of exercise rehabilitation, 12(3), 148–155. https://doi.org/10.12965/jer.1632638.319.
Marquez, C.M.S., Vanaudenaerde, B., Troosters, T., & Wenderoth, N. (2015). High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise. Journal of applied physiology (Bethesda, Md. : 1985), 119(12), 1363–1373. https://doi.org/10.1152/japplphysiol.00126.2015.
Mustroph, M. L., Merritt, J. R., Holloway, A. L., Pinardo, H., Miller, D. S., Kilby, C. N., Bucko, P., Wyer, A., & Rhodes, J. S. (2015). Increased adult hippocampal neurogenesis is not necessary for wheel running to abolish conditioned place preference for cocaine in mice. The European journal of neuroscience, 41(2), 216–226. https://doi.org/10.1111/ejn.12782.
NCD Risk Factor Collaboration (NCD-RisC) (2016). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet (London, England), 387(10026), 1377–1396. https://doi.org/10.1016/S0140-6736(16)30054-X.
Nursalam (2003). Konsep dan penerapan metodologi penelitian ilmu keperawatan pedoman skripsi, tesis dan instrumen penelitian keperawatan. Jakarta : Salemba Medika.
Nygaard, H., Nygaard, H., Slettalokken, G., Vegge, G., Hollan, I., Whist, J.E., Strand, T., Ronnestad, B.R. & Ellefsen, S. (2015). Irisin in blood increases transiently after single sessions of intense endurance exercise and heavy strength training. PLOS ONE, 10(3), 1–12. https://doi.org/10.1371/journal.pone.0121367.
Perosa, V., Priester, A., Ziegler, G., Cardenas-Blanco, A., Dobisch, L., Spallazzi, M., Assmann, A., Maass, A., Speck, O., Oltmer, J., Heinze, H. J., Schreiber, S., & Düzel, E. (2020). Hippocampal vascular reserve associated with cognitive performance and hippocampal volume. Brain : a journal of neurology, 143(2), 622–634. https://doi.org/10.1093/brain/awz383.
Pranoto, A., Wahyudi, E., Prasetya, R.E., Fauziyah, S. Kinanti, R.G., Sugiharto, S., & Rejeki, P.S. (2020). High intensity exercise increases brain derived neurotrophic factor expression and number of hippocampal neurons in rats. Comparative Exercise Physiology, 16(4), 325-332. https://doi.org/10.3920/CEP190063.
Pugazhenthi, S., Qin, L., & Reddy, P. H. (2017). Common neurodegenerative pathways in obesity, diabetes, and Alzheimer's disease. Biochimica et biophysica acta. Molecular basis of disease, 1863(5), 1037–1045. https://doi.org/10.1016/j.bbadis.2016.04.017.
Rasmussen, P., Brassard, P., Adser, H., Pedersen, M. V., Leick, L., Hart, E., Secher, N. H., Pedersen, B. K., & Pilegaard, H. (2009). Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Experimental physiology, 94(10), 1062–1069. https://doi.org/10.1113/expphysiol.2009.048512.
Rejeki, P.S., Pranoto, A., Prasetya, R.E., & Sugiharto. (2021). Irisin serum increasing pattern is higher at moderate-intensity continuous exercise than at moderate-intensity interval exercise in obese females. Comparative Exercise Physiology. Article In Press. https://doi.org/10.3920/CEP200050.
Riskesdas. 2018. Laporan Nasional Riset Kesehatan Dasar. Jakarta: Kemenkes RI. Available at: http://www.kesmas.kemkes.go.id.
Rodriguez, A. L., Whitehurst, M., Fico, B. G., Dodge, K. M., Ferrandi, P. J., Pena, G., Adelman, A., & Huang, C. J. (2018). Acute high-intensity interval exercise induces greater levels of serum brain-derived neurotrophic factor in obese individuals. Experimental biology and medicine (Maywood, N.J.), 243(14), 1153–1160. https://doi.org/10.1177/1535370218812191.
Sleiman, S. F., Henry, J., Al-Haddad, R., El Hayek, L., Abou Haidar, E., Stringer, T., Ulja, D., Karuppagounder, S. S., Holson, E. B., Ratan, R. R., Ninan, I., & Chao, M. V. (2016). Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. eLife, 5, e15092. https://doi.org/10.7554/eLife.15092.
Szuhany, K. L., Bugatti, M., & Otto, M. W. (2015). A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. Journal of psychiatric research, 60, 56–64. https://doi.org/10.1016/j.jpsychires.2014.10.003.
Tsai, C. L., Pan, C. Y., Chen, F. C., Wang, C. H., & Chou, F. Y. (2016). Effects of acute aerobic exercise on a task-switching protocol and brain-derived neurotrophic factor concentrations in young adults with different levels of cardiorespiratory fitness. Experimental physiology, 101(7), 836–850. https://doi.org/10.1113/EP085682.
van Praag, H., Shubert, T., Zhao, C., & Gage, F. H. (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. The Journal of neuroscience : the official journal of the Society for Neuroscience, 25(38), 8680–8685. https://doi.org/10.1523/JNEUROSCI.1731-05.2005.
Wang, C., Chan, J. S., Ren, L., & Yan, J. H. (2016). Obesity Reduces Cognitive and Motor Functions across the Lifespan. Neural plasticity, 2016, 2473081. https://doi.org/10.1155/2016/2473081.
Wang, R., & Holsinger, R. (2018). Exercise-induced brain-derived neurotrophic factor expression: Therapeutic implications for Alzheimer's dementia. Ageing research reviews, 48, 109–121. https://doi.org/10.1016/j.arr.2018.10.002.
Widyanto, T., & Hermanto, T. J. (2013). Perbandingan Kadar Brain Derived Neurotrophic Factor (BDNF) Serum Darah Tali Pusat Bayi Baru Lahir antara Ibu Hamil yang Mendapat DHA dengan Kombinasi DHA dan 11-14 Karya Mozart Selama Hamil. Majalah Obstetri & Ginekologi, 21, 109–114.
World Health Organization (WHO). 2016. Obesity and overweight. Geneva: WHO Press. Diakses 04 Juli 2021 dalam http://www.who.int/mediacentre/factsheets/fs311/en/.
Zhang, X. Y., Tan, Y. L., Chen, D. C., Tan, S. P., Yang, F. D., Wu, H. E., Zunta-Soares, G. B., Huang, X. F., Kosten, T. R., & Soares, J. C. (2016). Interaction of BDNF with cytokines in chronic schizophrenia. Brain, behavior, and immunity, 51, 169–175. https://doi.org/10.1016/j.bbi.2015.09.014.
##submission.copyrightStatement##