Implementasi Pengembangan Sistem Model Water Fall Untuk Data Warehouse Akademik

  • Arik Sofan Tohir Sofan Tohir Universitas Amikom Yogyakarta
  • Kusrini Kusrini Universitas Amikom Yogyakarta
  • Sudarmawan Sudarmawan Universitas Amikom Yogyakarta

Abstract

 
Data warehouse is a concept and a technology to store transactional data from several sources that have been through the process of filtering and selection of data. By using the Ectract, Transform and Load (ETL) process in the data warehouse, OLTP data is processed to produce good data and ready for use for the analysis process. For the design of this warehouse data will be built by using the Nine Step Method from Kimbal, so that the resulting warhouse data can be as expected. For the development of life flow system (SDLC) with waterfall model. By using the wate fall model will be built a prototype to implement the data warehouse design results.

References

J. Han and M. Kamber, Data Mining: Concepts and Techniques Second Edition. Oxford: Morgan Kaufman Publisher, 2006.

A. Rosa and M. Shalahuddin, Rekayasa Perangkat Lunak. Bandung: Modula, 2011.

Parsiyono, Kusrini, and A. Sunyoto, “Perancangan Data Warehouse Akademik Di Sekolah Tinggi Agama Budha,” J. Inf., vol. 1, 2015.

G. Karya and A. Sandi, “Penerapanan Business Intelligence untuk Analisis Data Profil Mahasiswa di Perguruan Tinggi,” in SNASTIKOM, 2012.

Taufik, “Model Executive Information System Dengan Menggunakan Online Analytical Processing Dan Data Warehouse Bidang Akademik,” Scan, vol. IX, no. 2, 2014.

A. Supriyatna, “Sistem Analisis Data Mahasiswa Menggunakan Aplikasi Online Analytical Processing (OLAP) Data Warehouse,” J. Pilar Nusa Mandiri, vol. XII, no. 1, 2016.

Published
2017-08-21
How to Cite
SOFAN TOHIR, Arik Sofan Tohir; KUSRINI, Kusrini; SUDARMAWAN, Sudarmawan. Implementasi Pengembangan Sistem Model Water Fall Untuk Data Warehouse Akademik. INTENSIF, [S.l.], v. 1, n. 2, p. 108-116, aug. 2017. ISSN 2549-6824. Available at: <http://ojs.unpkediri.ac.id/index.php/intensif/article/view/837>. Date accessed: 28 may 2018. doi: https://doi.org/10.29407/intensif.v1i2.837.
Section
Dababase Management

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.