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Abstract—Background: Rice disease classification using CNN models faces challenges due to limited 

data, particularly in minority classes, and inconsistent image quality, which affect model performance. Data 

augmentation techniques can potentially enhance classification accuracy by improving data diversity and 

quality. Objective: This study evaluates the effectiveness of data augmentation techniques, specifically 

classical augmentation and Deep Convolutional Generative Adversarial Networks (DCGAN), in improving 

CNN performance for rice disease classification. Methods: A quantitative study was conducted using four 

CNN training scenarios: no augmentation, classical augmentation, DCGAN augmentation, and a 

combination of both. Model accuracy was analyzed to determine the impact of each augmentation 

technique. Results: The baseline CNN model achieved an accuracy of 91.88%. Classical augmentation 

improved accuracy by 2.56%, while DCGAN augmentation led to a 5.44% increase. The combination of 

classical augmentation and DCGAN yielded the highest accuracy of 98.13%. Conclusion: Data 

augmentation significantly enhances CNN performance in rice disease classification, with the combined 

approach of classical augmentation and DCGAN proving to be the most effective. These findings highlight 

the importance of augmentation techniques in addressing data limitations and improving classification 

accuracy. Future research should explore additional augmentation strategies and test the model across 

different datasets to further validate its effectiveness. 
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 I. INTRODUCTION 

 Indonesia, as an agricultural country, has an agricultural sector that is the main pillar of the 

economy. According to the Central Statistics Agency (BPS), this sector contributed around 13.7% 

to Gross Domestic Product (GDP) in 2021 [1]. The agricultural sector provides a living for most 

Indonesians, particularly those residing in rural areas, and contributes to the country's food 

security. However, although the agricultural sector has great potential, various challenges still 

hinder the optimization of its productivity, one of which is the threat of plant diseases [2]. Plant 

diseases pose a significant risk to agricultural productivity as they can result in a variety of 

damages, including fruit wilting, death, or deformity [3]. The impact is a decrease in the quality 

and quantity of the harvest, as well as major economic losses for farmers [4]. 

 Indonesia's tropical climate, characterized by extreme weather fluctuations and the prevalence 

of diverse pathogens, exacerbates plant vulnerability to diseases [5]. Improper or late handling 

can cause major economic losses and disrupt agricultural production [6]. Plant disease 

identification necessitates a thorough comprehension of the symptoms that manifest so that 

appropriate treatment solutions can be applied [7]. However, there are several challenges in this 

process. Classifying plant diseases, especially in leaves, is difficult due to the complex pattern 

variations and high levels of similarity between disease classes [8]. In addition, not all farmers 

have adequate knowledge about the various types of plant diseases and how to handle them [9]. 

Conventional methods such as manual inspection are often time-consuming and inefficient [10]. 

Therefore, an automated system based on artificial intelligence technology is needed for faster 

and more accurate identification and handling of plant diseases [11]. 

 Research on plant disease identification has been widely conducted, but development 

opportunities in this field are still wide open. A study by [12], emphasized that although 

technology has developed in detecting plant diseases, further and integrated approaches are still 

needed to improve identification accuracy and provide more effective solutions for farmers. CNN 

(Convolutional Neural Network) has proven efficient in handling image data, recognizing 

complex patterns, identifying and categorizing a variety of plant [13]. A CNN-based system 

achieved 95.1% accuracy in detecting rice leaf diseases by extracting detailed visual features [14]. 

Other researchers have also shown very good results using CNN [15]. However, for this artificial 

intelligence system to function effectively, adequate and quality data is needed [16]. 

 CNN-based models are extensively used in various areas of plant disease identification. The 

quality of the dataset plays a crucial role in enhancing model generalization and preventing 

overfitting [17]. In the agricultural sector, data collection is often challenging, due to varying field 

conditions, unpredictable weather, and limited resources to conduct thorough documentation [18]. 
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Researchers have also observed that an imbalance in the number of examples between classes in 

a dataset can negatively impact model performance [19]. In the context of disease detection, this 

imbalance can cause models to fail to detect actual disease cases or even misclassify examples 

from minority classes [20]. To resolve this matter, data augmentation techniques have been 

implemented to produce new data that preserves the same information as the original data [21]. 

However, traditional augmentation techniques are often not effective enough in improving model 

generalization. Therefore, more sophisticated augmentation techniques are needed to improve 

model performance under more realistic conditions [22]. 

 Generative Adversarial Network (GAN) offers an innovative solution to the problem of data 

imbalance by generating realistic synthetic data. The generator is tasked with generating new 

images that are similar to the original data, while the discriminator is tasked with distinguishing 

between the original and synthetic images [23]s. Several researchers have shown that GAN is 

effective in addressing data imbalance by generating new digital data that is similar to the original 

data, thereby improving model performance [24], [25]. Innovations in GAN technology continues 

to bring great progress. Recent researches [26], shows that GAN is capable of generating realistic 

images that support detection models with better results.  

GANs have been effectively used to improve the accuracy of CNNs in plant disease detection 

and classification with promising results. For example, in tomato plants, GANs were employed 

for data augmentation, enriching the variation in the training data, and successfully improving 

disease classification accuracy to 93.7% [27]. The combination of GAN and CNN has also shown 

improved performance in detecting diseases across various plant species, with an accuracy of 

92.5% achieved through diverse data augmentation techniques [28]. CycleGAN, for instance, was 

used in cassava plant disease classification, increasing CNN accuracy to 89.8%  [29]. Different 

GAN variants have been explored with varying success. For example, Wasserstein GAN with 

gradient penalty (WGAN-GP) improved plant disease classification accuracy by 24.4% compared 

to classical augmentation techniques [30]. Other approaches, such as DuelGAN, used by [31] 

were able to improve the stability of generated samples and mitigate the mode collapse problem, 

making them more efficient and effective in generating realistic images. However, methods such 

as CycleGAN proposed by [32] for augmenting plant disease samples have difficulty in 

generalizing to different plant species and require intensive parameter tuning.  

 Furthermore, [33] introduced a novel model for plant disease identification based on leaf 

image classification, which combined DCGAN and a Multi-Layer Perceptron (MLP) classifier 

trained with a pseudoinverse autoencoder algorithm. This approach proved effective in addressing 

dataset imbalance and improving training efficiency. have successfully generated new images for 

training CNN, with an accuracy of 91.4% in detecting plant leaf diseases. Recent studies have 
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further explored the integration of DCGAN with CNNs in plant disease classification. For 

instance, a study by [34] evaluated the use of GANs, including DCGAN, to generate synthetic 

images and augment the dataset for rice leaf disease classification using CNN. This approach 

demonstrated a significant improvement in classification accuracy. Similarly, [35] utilized the 

CNN InceptionNet architecture alongside transfer learning for coffee plant disease detection and 

classification, incorporating DCGAN for dataset enhancement. This composite model 

outperformed the standard CNN model, showing better results.  

 Based on this background, DCGAN is used in this study due to its ability to generate realistic 

synthetic data, enriching datasets and expanding the feature space. This study aims to develop a 

deep learning model that integrates CNN and DCGAN for the classification of rice leaf diseases. 

The proposed approach leverages CNN architecture, which is enhanced by integrating DCGAN 

to address the challenges posed by limited training data. DCGAN is recognized for its ability to 

generate realistic synthetic data, enriching datasets and expanding the feature space, thereby 

improving model training efficiency and generalization capabilities. This integration is expected 

to strengthen the CNN’s capacity to recognize complex patterns in plant disease symptoms, 

leading to higher classification accuracy. In addition, this solution is also expected to be the first 

step in developing a more integrated smart farming system (Smart Tani). The implementation of 

this system can help farmers identify plant diseases more quickly and accurately, which is very 

important for faster decision making in disease management. Thus, the results of this study are 

expected to increase efficiency in agricultural management, reduce losses due to plant diseases, 

and improve food security and farmer welfare in Indonesia. 

 II. RESEARCH METHOD 

Each step of the research is explained in stages, starting from data collection and preprocessing 

to the implementation of DCGAN to generate synthetic images and training CNN models to 

evaluation. To further clarify the research flow, it can be seen in Fig 1. 
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Fig 1. Research Flow 

This study employs an experimental design with four scenarios to evaluate the impact of data 

augmentation on rice plant disease classification using the CNN MobileNet V2 model: Scenario 

1: CNN trains and tests on the original dataset without augmentation. Scenario 2: Classical 

augmentation techniques are applied using Image Data Generator (IDG) to increase the variation 

of the dataset. Scenario 3: DCGAN is used to generate more varied synthetic images to increase 

the training data volume. Scenario 4: A combination of classical augmentation and DCGAN are 

used together to train CNN. The model's performance is evaluated using accuracy, precision, 

recall, and F1-score to determine the most effective augmentation method. 

Researchers collected a dataset of rice leaf images obtained from public data sources on 

Kaggle. The labeling of the dataset has been confirmed by the Pest and Disease Observation 

Laboratory (LPHP) divided into 7 classification classes. Each class in the classification of plant 

diseases reflects a variation in typical visual symptoms, depending on the type of disease. For 

example, Brown Spot caused by fungi, is characterized by brown spots on the leaves. Meanwhile, 

Bacterial Blight is a bacterial disease that can cause rice leaves to die, with the characteristic of 

water spots appearing on the leaves [28] . These diseases are types that very often attack rice 

plants in Indonesia. Details of the dataset can be seen in table 1. This table also explains the 

division of the amount of data for training and testing on each dataset. 
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Table 1. Dataset Plant of Disease 

Class Name of Disease Initial Data 

0 Blast_Disease 80 

1 Bacterial_Blight_Disease     80 

2 Brown_Spot_Disease   154 

3 Healthy_Rice_Leaf    347 

4 Leaf_Scald_Deases      233 

5 Narrow_Brown_Spot 196 

6 Tungro_Virus 79 

Total 1169 

Train data 935 

Test data 234 

 Fig 2 shows a collection of rice leaf photos used as a dataset. Each image represents different 

conditions of leaves infected with the disease. These images were used as initial input in training 

CNN and GAN models before any augmentation or manipulation. 

 

Fig 2. Rice Plant Disease Dataset 

 The preprocessing in this study aims to ensure consistency in data size, scale, and distribution 

to fit the format required by the CNN and GAN models. The preprocessing steps include: (1) 

Resizing images to 128x128 pixels. (2) Splitting the dataset into 80% for training and 20% for 

testing using train_test_split, with stratify to maintain class balance. (3) Converting X_train and 

X_test to float32 data type for compatibility with the CNN model input format. (4) Normalizing 

the pixel values to the range [-1, 1] to prevent overfitting and improve training speed. (5) Applying 

One-Hot Encoding to convert y_train and y_test labels into binary vectors using to_categorical. 
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Data augmentation is a technique used to enrich the training dataset by creating variations 

from existing data without adding new data. This technique enhances the model's generalization 

ability and reduces the risk of overfitting. In this study, augmentation is performed using two 

approaches: 

A. Classical Augmentation 

During model training, Keras' IDG class performs real-time image augmentation. This 

technique aims to increase the diversity of a dataset without increasing its physical size. IDG 

generates images in batches during training, allowing the model to see more data variation in each 

epoch, even though the physical images do not increase [36]. We apply augmentation randomly 

and combinative, allowing each batch to incorporate distinct transformations for each image, 

thereby reducing overfitting and enhancing overall model performance. Various classical 

augmentation techniques with randomly set parameters, as presented in Table 2. 

Table 2. The Parameter of Augmentation Technique 

No Data Augmentation Techniques 

1 channel_shift_range =50, horizontal_flip = True, vertical_flip =True 

2 horizontal_flip =True, vertical_flip =True, shear_range =0.2 

3 channel_shift_range =50, horizontal_flip = True, vertical _flip =True, 

brightness_range = [0.2, 1.2] 

4 channel_shift_range =50, horizontal_flip = True, vertical_flip =True, rotation_range 

=20 

5 channel_shift_range =50, horizontal_flip = True, vertical_flip =True, 

brightness_range = [0.2, 1.2], zoom_range =[ 0.5, 1.0] 

B. Build DCGAN Architecture 

The process involves creating new images using the original data distribution, which enhances 

the dataset by adding more realistic variations. Alec Radford et al. introduced it in 2015. DCGAN 

has the unique ability to capture spatial structures in image data, allowing them to produce sharper 

and more realistic images than traditional GANs using fully connected neural networks. Fig3 

illustrates the DCGAN architecture, which consists of two main networks: the generator and the 

discriminator. Both networks utilize convolutional layers and train using the binary cross-entropy 

loss function [37]. 
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Fig3. DCGAN Architecture 

The backpropagation method and Adam optimizer update the weights on both networks during 

training. We carry out this process iteratively for 20,000 epochs until the generator generates 

images so realistic that the discriminator struggles to distinguish between real and fake images. 

Once training is complete, we combine the synthetic images generated by GAN with the original 

dataset to train the CNN model. 

C. CNN  

The CNN architecture used in this project is MobileNetV2 transfer learning. This model was 

chosen because of its superior ability to extract features from images [38]. In addition, this model 

has also been compared with several other architectures, and the evaluation results show that this 

model is the most suitable for this work. By using MobileNetV2, complex visual features from 

plant disease images can be effectively extracted, helping the model achieve better performance 

in terms of accuracy and generalization. 

 

Fig 4. DCGAN Architecture 

 Fig 4 outlines the steps for building this architecture. First, MobileNetV2 is loaded without 

the last fully connected layer. The input image, sized 128x128x3, is processed to extract important 

features, followed by dimensionality reduction using the Global Average Pooling2D layer to 

minimize the risk of overfitting and enhance efficiency. Next, a Dense layer with 1024 neurons 
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activated by ReLU is added to connect the features to the classification output. To further prevent 

overfitting, a Dropout layer with a rate of 0.4 is applied. The output layer consists of seven units 

with a SoftMax activation function for accurate predictions in multi-class classification. All pre-

trained MobileNetV2 layers are frozen during training, allowing the model to leverage previously 

learned features without retraining entirely, resulting in an efficient model suitable for new 

datasets. 

 CNN model evaluation is performed to assess the performance and effectiveness of the model 

after the training process. The first step is to monitor the accuracy and loss during training to help 

identify overfitting problems by comparing the model's performance on the training data and 

validation data. After training is complete, the model is tested using the test data (test set) with 

the model.evaluate() function, which produces accuracy and loss values on data not seen during 

training. Accuracy is used to assess how well the model predicts the correct class on the test data. 

In addition to accuracy, precision and recall are used to provide more detailed information about 

the model's performance. Precision shows how accurate the model's predictions are. While recall 

shows how many diseases were successfully detected. While F1-score, combining precision and 

recall, provides a more comprehensive metric in assessing model performance, especially when 

dealing with imbalanced datasets. For a deeper analysis, a confusion matrix is employed, 

presenting a comprehensive view of the classification results. This matrix illustrates the number 

of correct and incorrect predictions for each class, providing valuable insights into specific areas 

where the model performs well or needs improvement [39]. 

 III. RESULT AND DISCUSSION 

 The initial dataset shown in Table 1 shows some data imbalance. For example, classes 0, 1, 

and 6 each have only about 80 images, while class 3 has 347 images. This imbalance can cause 

bias during model training, as the model is more likely to recognize classes with more data, thus 

ignoring minority classes with fewer images. This is evident by the evaluation results presented 

in Table 3, which encompass the F1-score metrics for each class, as well as precision, recall, and 

accuracy. 

Table 3. Evaluation Results on Original Dataset 

Label Accuracy Recall Precision F1-Score 

Global 0.9188 0.9188 0.9164 0.9156 

0 0.9354 0.9355 0.9062 0.9206 

1 1.0 1.0 0.9792 0.9894 

2 0.948 0.948 0.8604 0.9024 

3 0.625 0.625 0.8333 0.7142 

4 0.9375 0.9375 0.8823 0.9090 

5 0.9710 0.9710 0.9710 0.9710 

6 0.625 0.625 0.7692 0.6896 
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 Class 6 shows a drastic decline in performance, maybe due to the limited data. In deep 

learning, models require a large and diverse dataset to learn patterns effectively. The lack of data 

hinders the model's generalization, resulting in lower accuracy and F1-score. Class 1, despite 

having relatively fewer images, demonstrates almost perfect accuracy and F1-score. This is likely 

due to the visual characteristics of the pictures of this class being easier for the model to recognize. 

For instance, if the images in Class 1 have clear and consistent patterns or textures, the model can 

learn these patterns more effectively, even with a small dataset. The image quality, being more 

representative of the class, could also contribute to better model performance. 

 Class 3, despite having the largest amount of data, shows a lower performance than other 

classes. This could be attributed to poor image quality, such as low resolution, noise, or lack of 

variation that adequately represents the class characteristics. Even though the dataset is large, 

poor image quality limits the model's ability to identify pertinent patterns effectively. Bad image 

quality hinders the model's learning process, leading to lower accuracy. 

 These results emphasize that the amount of data and image quality play a crucial role in 

improving the model's performance. These test results are consistent with previous research [16] 

highlighting the significance of image quality in enhancing classification model performance. 

Therefore, improving image quality is as important as increasing the dataset size for optimal 

model performance. 

A. Classic Augmentation Data Results 

 The evaluation compared the model's performance and generalization by examining Training 

Loss (train_loss) and Validation Loss (val_loss) values. This observation evaluates the model's 

learning ability, measures its effectiveness in classification, and assesses its performance on 

previously unseen validation data. By comparing these two metrics, researchers can detect 

potential overfitting, where the model is overly responsive to the training data.  

Table 4. The Results of Augmentation Technique 

No F1-score Train_acc Val_acc Train_Loss  Val_Loss 

1 0.9442 0.9829 0.9444 0.0568 0.1611 

2 0.9376 0.9818 0.9402 0.0702 0.1637 

3 0.9298 0.9658 0.9316 0.1167 0.2064 

4 0.8979 0.9348 0.9017 0.1838 0.2865 

5 0.8724 0.9155 0.8846 0.3261 0.2447 

 Based on Table 4, the results of augmentation technique number 1 show that this technique is 

very effective in improving model performance. This can be seen from the small difference 

between train_acc and val_acc, as well as train_loss and val_loss, which shows that the model is 

capable of learning effectively without overfitting. This augmentation technique is considered 

optimal because it not only helps the model learn efficiently from the training data but also ensures 
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strong generalization ability on validation data, which has never been seen before. The high F1-

score value also confirms the balance between precision and recall in the model's prediction 

results. 

 On the other hand, augmentation with shear_range and brightness_range (augmentation 

number 2 and 3) gives a decreasing result compared to the first augmentation. Although there is 

a decrease in performance, the F1-score, val_acc, and val_loss values show that this augmentation 

is still able to maintain generalization performance quite well. The transformation resulting from 

this augmentation technique, although more complex, still maintains visual patterns that are 

relevant for plant disease classification, so it does not greatly affect the model's ability to 

recognize important patterns. In contrast, augmentation number 5 involving a combination of 

brightness_range and zoom_range shows a significant decrease in performance. The increase in 

train_loss and val_loss, as well as the decrease in accuracy, indicate the potential for overfitting.  

 The extreme variation of this technique seems to obscure the original patterns in the dataset. 

As a result, the model focuses more on irrelevant or overly variable features, making it difficult 

to apply the learned patterns when faced with validation data. This shows that excessive variation 

in augmentation can hinder the model's ability to recognize important patterns. This point 

emphasizes the importance of choosing a balanced augmentation technique. Augmentation that 

is too extreme or does not match the characteristics of the dataset can reduce the model's ability 

to learn and generalize and increase the risk of overfitting. Fig 5 shows a visual example of the 

results of classical augmentation applied to one of the classification classes. This visualization 

helps to understand how augmentation modifies the original data and enriches the diversity of the 

training data, which can ultimately improve the model's ability to better recognize plant disease 

patterns.  

 

Fig 5. DCGAN Training Results 
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B. DCGAN Training Results 

 Fig 6 shows the results of DCGAN training, where the generated synthetic images visually 

resemble the original dataset. Although some images still have shortcomings, such as blurring or 

imperfect artifacts, the results are good enough to enrich the dataset. These synthetic images are 

used as data augmentation, by adding as many as 100 images for each class, so that it can help 

improve the model's performance during training. 

 

 Fig 6. DCGAN Augmentation Result Dataset Image 

 This augmentation technique enhances the training dataset by introducing variations that 

mimic real-world conditions, which is particularly beneficial for training deep learning models 

like CNNs. The evaluation results of using DCGAN images can be seen in Table 5. This table 

shows the improvement in the performance of the CNN model.  

Table 5. Evaluation Results of using DCGAN 

Label Acc Recall Precision F1-Score 

Global 0.9732 0.9732 0.9737 0.9730 

0 0.9803 0.9804 0.9434 0.9615 

1 1.0 1.0 0.9889 0.9944 

2 0.9831 0.9831 0.9831 0.9831 

3 0.8889 0.8889 0.9412 0.9143 

4 0.9167 0.9167 0.9429 0.9296 

5 0.9722 0.9722 0.9722 0.9722 

6 1.0 1.0 1.0 1.0 

 The evaluation results show a remarkable improvement in the performance of the CNN model. 

The recall value reaches a high value of 97.32%, indicating that the model rarely misses the 

correct sample. This means that the model can recognize 97.32% of the cases that belong to each 

class. In addition, the high precision reaches 97.37%, indicating that most predictions made by 
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the model are accurate, with a very low error rate. The combination of high precision and recall 

produces an F1-score close to the maximum value, confirming that the overall performance of the 

model is very good in handling multi-class classification. The overall accuracy of the CNN model 

also reaches 97.32%, indicating that augmentation with synthetic images from DCGAN 

effectively enriches the dataset. This helps the model to learn more diverse and complex patterns, 

thereby improving the model's generalization ability on new data. 

 This improvement confirms that the use of DCGAN as a data augmentation method can 

provide significant contributions in improving model performance, especially on datasets that 

have limitations in the number and diversity of images. The results of this study are in line with 

previous research [24] [25] , which also shows that GAN-based augmentation can effectively 

improve the performance of classification models. 

 Based on Table 5, class 6 shows an excellent performance, with accuracy, precision, recall, 

and F1-score all being 1.0. This indicates that the model makes no mistakes in recognizing 

samples from this class. Every image from class 6 is successfully classified correctly, and every 

prediction made by the model in this class is very accurate. This excellent performance is the 

result of increasing the amount of data through GAN augmentation. GAN helps the model 

understand visual patterns in this class better. This improvement is very significant because before 

augmentation, class 6 was one of the classes with the most limited amount of data. The initial 

accuracy of this class was 62.5%, indicating that the model had difficulty in recognizing relevant 

patterns. After augmentation with DCGAN, the accuracy increased by 37.5%, reaching a perfect 

score. This improvement ensures that every image in this class is recognized consistently, both in 

the training data and the test data. 

 An outstanding improvement was also seen in class 3, which previously had problems related 

to image quality. Before augmentation, the model's performance on this class was low, reaching 

only 62.5%. However, augmentation with GANs successfully overcomes this challenge by 

generating synthetic images that increase the diversity and quality of the dataset. This allows the 

model to recognize patterns better. Although this class still shows lower results than the other 

classes, at 88.89%, the significant improvement after augmentation shows that GANs are a very 

effective tool in improving model performance, especially in classes that were previously difficult 

to recognize. 
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Fig 7. Comparison of CNN Performance on All Scenarios 

 The graph in Fig 7 provides a clear picture of the impact of different augmentation techniques 

on the performance of the CNN model. Each augmentation technique used shows a clear 

improvement in performance metrics such as accuracy, recall, precision, and F1-score. The first 

scenario shows the lowest performance. The model is trained using only the original dataset 

without any additional data variations, indicating the model's limitations in recognizing patterns 

from a limited dataset. The second scenario after applying classical augmentation, CNN 

performance improved. Accuracy increased by 2.56%, accompanied by similar improvements in 

other matrices. Classical augmentation helps introduce simple variations that improve the model's 

ability to recognize more diverse patterns, reduce the risk of overfitting and improve the model's 

generalization ability.  

 The third scenario shows a higher performance improvement, with an accuracy of 97.32%. 

The use of GANs allows the creation of realistic synthetic images but with wider variations. These 

results show that GAN-based augmentation is very effective in improving model performance, 

especially when the original data is limited. The model is more effective in recognizing complex 

and varied patterns. The F1-Score value shows that the model can detect disease classes with a 

very low error rate. 

 The last scenario gives the best result with an accuracy of 98.13%. The combination of 

classical augmentation and DCGAN provides a double benefit: classical augmentation introduces 

simple variations to the original data, while DCGAN enriches the dataset with new, more varied 

images. This combination allows the model to be more robust and improves generalization, 

making it more effective in handling patterns that have never been seen before. 

C. Discussion  

 Overall, this comparison shows that the use of GANs, either alone or in combination with 

classical augmentation techniques, significantly improves the performance of CNNs. More 
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advanced augmentation techniques allow the model to learn more diverse and complex patterns, 

which ultimately contributes to improved accuracy and better detection capabilities.  

 This study shows how important data augmentation is to improve the performance of CNN 

models in classifying rice plant diseases, especially when the dataset is limited or imbalanced. 

The use of DCGAN is very effective in creating quality synthetic data that helps the model 

improve. However, there are many obstacles in training DCGAN, such as requiring a lot of 

computing resources and complicated hyperparameter settings. So, making DCGAN may not 

always be practical when resources and time are limited. Although DCGAN can be the best 

solution for the problem of data shortage. In addition, data augmentation with DCGAN provides 

advantages in terms of creating new image variations that cannot be generated by classical 

augmentation. In the case of very small and difficult to obtain datasets, the use of GAN can 

improve model performance, as seen in the increase in accuracy in minority classes. 

 Classical augmentation methods, although simpler and faster to implement, have limitations 

in terms of the variety of data generated. Because they only modify existing data, they are unable 

to generate new visual patterns like GANs do. Therefore, classical augmentation is ideal for 

situations where the dataset is already relatively large and diverse enough to improve model 

performance without facing complex training challenges. but not effective enough when the 

dataset is very limited.  One of the key findings of this study is that improving model 

performance depends not only on increasing the amount of data, especially on the minority class, 

but also on improving the overall image quality. Preprocessing and improving image quality, 

either through augmentation or other techniques, can help the model recognize clearer and more 

consistent patterns across classes. Therefore, combining classical augmentation and GANs proved 

to be an optimal approach, with classical augmentation adding variations to the original images 

and GANs enriching the dataset with new, realistic data. 

 IV. CONCLUSION 

 This study highlights the effectiveness of GANs, particularly DCGAN, in improving CNN 

performance for rice disease classification. GANs, either alone or combined with classical 

augmentation, enhance model accuracy by generating diverse and complex patterns. While 

classical augmentation is simpler and faster, it lacks the ability to create entirely new patterns, 

making it less effective for small or imbalanced datasets. In contrast, DCGAN-generated synthetic 

data significantly improve model performance, especially for minority classes.   

Despite its advantages, DCGAN requires substantial computational resources and careful 

hyperparameter tuning, making implementation challenging. However, it provides a crucial 

benefit by generating realistic image variations that classical augmentation cannot achieve. This 
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makes DCGAN particularly valuable for small, hard-to-obtain datasets, where model 

performance heavily depends on data diversity.   

A key finding is that improving model performance requires not only increasing data quantity 

but also enhancing image quality. Preprocessing and augmentation techniques help CNNs 

recognize clearer patterns across classes. The combination of classical augmentation and GANs 

proved to be the optimal approach, with classical methods introducing variations in existing 

images and GANs enriching the dataset with realistic synthetic data. 
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