
INTENSIF, Vol.9 No.1 February 2025 

ISSN: 2580-409X (Print) / 2549-6824 (Online) 

DOI: https://doi.org/10.29407/intensif.v9i1.23723 

 

46 INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi 

 

Environmental Acoustic Features Robustness 

Analysis: A Multi-Aspecs Study 
 

 

Received: 

25 September 2024 

Accepted: 

26 November 2024 

Published: 

23 February 2025 

1*Andi Bahtiar Semma, 2Kusrini, 3Arif Setyanto,  
4Bruno da Silva, 5An Braeken 

1-3Informatics, Universitas AMIKOM Yogyakarta 
1,4,5Industrial Engineering, Vrije Universiteit Brussels 

1Informatics, Universitas Islam Negeri Salatiga 

E-mail: 1andisemma@uinsalatiga.ac.id, 2kusrini@amikom.ac.id, 
3arief_s@amikom.ac.id, 4bruno.da.silva@vub.be, 

5an.braeken@vub.be 
*Corresponding Author 

Abstract—Background: Acoustic signals are complex, with temporal, spectral, and amplitude 

variations. Their non-stationarity complicates analysis, as traditional methods often fail to capture their 

richness. Environmental factors like reflections, refractions, and noise further distort signals. While 

advanced techniques such as adaptive filtering and deep learning exist, comprehensive acoustic feature 

analysis remains limited.  Objective: This study investigates which acoustic features maintain the highest 

robustness across diverse environments while preserving discriminative power.  Methods: Audio samples 

were recorded in controlled environments (jungles, cafés, factories, streets) with varying noise levels. 

Standardized equipment captured 22050 Hz, 16-bit audio at multiple positions and distances. After 

amplitude standardization, various acoustic features were extracted and analyzed.  Results: MFCCs 

demonstrated exceptional reliability, with correlation coefficients of 0.98819 and 0.98889 for closely 

positioned devices and a robustness score of 0.99. Across different acoustic scenes and sample lengths (1, 

3, 5s), MFCCs maintained high correlation (≈0.978) and robustness (0.98), confirming their versatility.  

Conclusion: MFCCs proved highly effective for acoustic fingerprinting across settings. Despite limitations 

in tested environments (≤5m distance, ≤5s samples), their consistent performance validates the 

methodology. Future research should explore combining MFCCs with spectral features and expanding 

studies to broader environments and device types. 
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 I. INTRODUCTION 

  The complexity of acoustic signals encompasses multiple interrelated dimensions that 

challenge analysis and interpretation in the field of acoustics. These signals exhibit intricate 

frequency content, ranging from infrasonic to ultrasonic components. Amplitude modulations and 

phase relationships further complicate their characteristics. Spatial properties and stochastic 

elements add additional layers of complexity, necessitating advanced analytical techniques [1], 

[2]. Acoustic fingerprinting is a method that creates a compact digital summary, or "fingerprint," 

of an audio sample that can be used for various applications [3] [4]. These extracted features are 

then condensed into a compact digital signature, which is much smaller than the original audio 

file but still contains enough information to uniquely identify it [5]. Effective acoustic 

fingerprinting techniques are designed to be robust against various noise conditions [6]. In the 

realm of indoor positioning systems, researchers have developed hybrid approaches that combine 

acoustic ranging with Wi-Fi fingerprinting to achieve meter-level accuracy in non-line-of-sight 

environments [3]. This technology has also been applied to device authentication, with studies 

exploring the use of MEMS sensor readings in response to acoustic signals to identify devices 

[4]. In the context of drone security, acoustic noise fingerprinting has been proposed as an 

additional authentication factor for delivery drones, offering protection against impersonation 

attacks [5]. Furthermore, acoustic fingerprinting has been implemented in hardware architectures 

for audio ownership verification and content management [7]. The power consumption 

implications of acoustic sensing applications on smartphones have also been studied, providing 

insights into the feasibility of long-term acoustic monitoring tasks [8]. These diverse applications 

demonstrate the versatility and potential of acoustic fingerprinting in addressing challenges across 

multiple domains.  

  Real-world acoustic environments pose several challenges that impact the performance of 

acoustic technologies. Environmental factors play a significant role in distorting acoustic signals, 

often complicating the transmission and reception of sound in various settings [9], [10]. One 

primary environmental factor affecting acoustic signals is atmospheric conditions. Temperature 

inversions, for instance, can create acoustic shadows or enhance sound propagation over long 

distances. Wind also significantly influences sound transmission, potentially increasing or 

decreasing the effective range of acoustic signals depending on its direction relative to the sound 

source [11]. Physical obstacles in the environment present another major source of distortion. 

Objects such as buildings, trees, and terrain features can cause reflection, diffraction, and 

scattering of sound waves. These phenomena can lead to multipath propagation, where the same 
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signal arrives at the receiver via multiple paths with different time delays and amplitudes. This 

can result in interference patterns, echoes, and reverberation [12]. 

  Background noise is a pervasive environmental factor that can interfere with acoustic signals. 

Urban environments, in particular, are characterized by a complex traffic, construction, and 

human activity soundscape, which can obscure signals of interest. Natural environments also 

contribute their own acoustic backgrounds, such as wind noise, water sounds, or animal 

vocalizations, which can interfere with signal detection and analysis [13], [14]. In the deployment 

of acoustic-based COVID-19 screening systems, the performance of classifiers can degrade due 

to variations in recording devices and noise contamination, as well as differences in the symptom 

status of individuals being tested. This variability can lead to inconsistent performance across 

different datasets [15]. In acoustic emotion recognition systems, the challenge lies in developing 

feature representations that can abstract away extraneous low-level variations while capturing 

relevant speaker characteristics [16]. Water bodies present unique challenges for acoustic signal 

propagation. In underwater environments, factors such as water temperature, salinity, and depth 

affect sound speed and create complex propagation paths [17]. Techniques such as adaptive 

filtering [18] and beamforming [19], [20] noise reduction are continually being developed to 

improve the robustness of acoustic systems in complex, real-world environments.  

  Acoustic signals are inherently complex, comprising many features that interact in intricate 

ways. These features include temporal characteristics (duration and rhythm), spectral components 

(frequency content and distribution), and amplitude variations. The complexity is further 

compounded by acoustic signals being often non-stationary, meaning their statistical properties 

change over time. This variability poses significant challenges for signal analysts, as traditional 

methods designed for stationary signals may fail to capture the full richness of acoustic data [21], 

[22], [23], [24]. One of the primary reasons for the complexity of acoustic signal features is the 

influence of environmental factors. Acoustic signals propagate through various media and are 

subject to reflections, refractions, and absorptions, which can significantly alter their 

characteristics. Moreover, background noise and interfering sources can mask or distort the signal 

of interest, making feature extraction and analysis even more challenging [25], [26], [27]. These 

environmental effects necessitate sophisticated signal processing techniques to isolate and 

accurately characterize the desired acoustic features. The novelty of this research is depicted in 

Figure 1. 

  However, existing research in acoustic signal analysis has primarily focused on applying pre-

selected features to specific applications without systematically evaluating the robustness and 

effectiveness of different acoustic features across varying conditions. While previous studies [28], 

[29] have utilized commonly accepted acoustic features, they did not conduct comprehensive 
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comparative analyses to determine which features maintain their discriminative power under 

diverse environmental challenges. The difference between this research and previous research is 

its systematic approach to evaluating and comparing acoustic features' performance across 

different environmental conditions. Prior works have focused on applying specific features to 

solve particular problems, such as speech emotion recognition [30] or wildlife-vehicle collision 

prediction [31]. On the other hand, this study aims to provide a fundamental understanding of 

which acoustic features demonstrate superior robustness and discriminative power regardless of 

environmental variations. From that background, we formulate a research question: Which 

acoustic features demonstrate the highest robustness across diverse environmental conditions 

while maintaining discriminative power? 

  Ultimately, this research aims to comprehensively evaluate acoustic features to determine 

which ones maintain their effectiveness across diverse environmental conditions while preserving 

their discriminative capabilities. This fundamental analysis will contribute to developing more 

reliable and adaptable acoustic-based systems, particularly in challenging real-world 

environments where traditional approaches may fall short, like speech recognitions [32], [33].

  

 

Fig 1. Novelty flowchart 

 II. RESEARCH METHOD 

  This study uses quantitative methodology with an experiment approach to analyse the most 

robust and invariant acoustic feature/s from diverse environmental scenes. This study is divided 

into several steps: 
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A. Data Acquisition 

   

  A diverse audio dataset was compiled by capturing audio samples across various controlled 

environmental conditions. Controlled recording locations encompassed a range of noise levels 

and ambient sounds, including jungle [34], café [35], machine [36], and street [37] settings. This 

approach aimed to establish a robust foundation for subsequent analysis. Recordings were 

captured from multiple device positions and distances within each controlled environment to 

characterize acoustic environments comprehensively.  

  Standardized recording equipment and procedures were implemented throughout the data 

collection to ensure consistency and comparability. These recordings will use 22050 Hz at 16-bit.  

Furthermore, this study will employ single and multiple sound sources. The sample length dividen 

into 1, 3, and 5 seconds with 50 chunks each. Figure 2 illustrates the recording setups. The 

microphone symbol is the recording device, and the speaker symbol is the sound source. 

  

 

Fig 2. Single Source Setup 

 

B. Pre-processing and Feature extraction 
 

  Before feature extraction, amplitude standardization was applied to the audio data to normalize 

amplitude. Furthermore, extracting a comprehensive set of features from the audio data will be 

conducted, including Mel-frequency cepstral coefficients (MFCCs), chroma_cens, chroma_cqt, 

chroma_stft, mel_spectrogram, onset_strength, spectral_bandwidth, Spectral Centroid, Spectral 

Contrast, Spectral Flatness, Spectral Rolloff, Tempo, Tonnetz and Zero Crossing Rate.  

  The spectral features form the backbone of audio fingerprinting. Mel-frequency cepstral 

coefficients (MFCCs) capture the timbral characteristics of sound, making them crucial for 

identifying unique audio signatures [38], [39]. Spectral Centroid, Bandwidth, Contrast, Flatness, 

and Rolloff collectively describe the distribution and quality of frequencies, helping distinguish 

between different audio samples with high precision [40]. The chroma variants (CENS, CQT, 
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STFT) are vital as they represent the harmonic and melodic content of audio. These features map 

the entire spectrum into 12 pitch classes, making them invariant to changes in octave while 

preserving the musical character of the audio, essential for robust fingerprinting [41]. Onset 

strength [42] and Tempo [43] features capture the rhythmic elements and temporal evolution of 

the audio signal. Zero Crossing Rate [44], [45] provides information about the signal's frequency 

content and noisiness. These temporal characteristics are crucial for distinguishing between 

similar-sounding audio segments. Mel spectrograms [46] provide a comprehensive frequency 

representation that aligns with human auditory perception. Tonnetz [46], [47] features capture 

harmonic relationships in a unique geometric space. This multi-dimensional representation makes 

fingerprints more unique and reliable for audio matching. 

 

C. Robustness Analysis 

  A key aspect of robustness analysis is calculating Pearson's correlation. Pearson's correlation 

coefficient [48], [49] measures the linear relationship between two variables, ranging from -1 to 

1. After calculating these metrics, results will be ranked to determine the most robust feature.  

 III. RESULT AND DISCUSSION 

A. Pearson's correlation across scenes 

 

  MFCC consistently shows the highest correlation across all scenes, with values ranging from 

0.97198 (machine) to 0.98344 (street). This suggests that MFCC is the most reliable feature in 

acoustic scene variations, maintaining a strong correlation regardless of the environment. The 

zero-crossing rate demonstrates a high correlation in most scenes, particularly in the jungle 

environment (0.95391). However, its performance varies across scenes, with lower correlations 

in street (0.73137) and machine (0.78992) environments.  

  Spectral features (bandwidth, centroid, rolloff, and flatness) generally show moderate to high 

correlations, but their performance varies depending on the scene. For example, the spectral 

centroid has a high correlation in the multi2 scene (0.84386) but performs poorly in the street 

scene (0.53809). Mel spectrogram exhibits consistently moderate correlations across all scenes, 

ranging from 0.54985 (multi2) to 0.84032 (jungle). Chroma-based features (chroma_cens, 

chroma_cqt, chroma_stft) and tonnetz show lower correlations than other features, with values 

typically below 0.7. However, chroma_stft performs exceptionally well in the jungle scene 

(0.89612), indicating its potential usefulness in specific environments. Spectral contrast 

consistently shows the lowest correlation across all scenes, with values ranging from 0.21764 

(machine) to 0.28841 (cafe).  
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  The cafe scene shows high correlations for several features, including spectral bandwidth 

(0.80811) and spectral centroid (0.79405). The jungle scene demonstrates high correlations for 

multiple features, including zero-crossing rate (0.95391) and chroma_stft (0.89612), suggesting 

that these features could be valuable for identifying jungle environments. The machine scene 

shows relatively lower correlations for most features than other scenes, with only MFCC and 

zero-crossing rate performing well. This indicates that machine environments are more 

challenging. Figure 3 illustrates Pearson's correlation across scenes. 

 

 

Fig 3. Pearson's correlation across scenes 

B. Physical distance impact 
  

  MFCC consistently shows the highest correlation and robustness across distances. For pairs 

1m and 3m, it achieves an impressive Pearson's correlation of 0.98819 and 0.98889. Even for 5m 

distance, MFCC maintains a high correlation of 0.95704. There is a general trend of decreasing 

correlation as we move from 1m to 3m and then to 5m. This indicates that increasing physical 

distances also increases differences in the acoustic characteristics captured. However, this also 

indicates that MFCC is the most reliable feature for acoustic fingerprinting in a physical distance 

context. Detailed pearson's correlation across distances is illustrated in Figure 4.  
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Fig 4. Pearson's correlation across distances 

C. Sample lengths impact 

  Across all sample lengths (1, 3, and 5 seconds), MFCC maintains an exceptionally high 

Pearson's correlation of around 0.978. This remarkable stability indicates that MFCC is a highly 

reliable feature for acoustic fingerprinting, regardless of the sample duration. This indicates that 

while the linear relationship weakens with longer samples, the overall reliability of the feature 

remains consistent. Lastly, the result reveals that the spread of Pearson's correlation generally 

increases as sample length increases. This trend indicates that longer audio samples provide more 

variation correlations across different instances of the same audio, potentially leading to less 

reliable fingerprinting results. Figure 5 illustrates Pearson's correlation across sample length.  

 

 

Fig 5. Pearson's correlation across sample length 

  The results of this research are focused on three key areas of acoustic analysis. In scene 

analysis, MFCC demonstrated the highest correlations, ranging from 0.97198 in machine 

environments to 0.98344 in street settings. The zero-crossing rate showed varying performance, 

with its strongest correlation in jungle environments (0.95391) but weaker correlations in street 
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(0.73137) and machine (0.78992) settings. In terms of distance analysis, MFCC maintained strong 

correlations across different distances. At 1m and 3m, it achieved impressive Pearson's 

correlations of 0.98819 and 0.98889, respectively, while still maintaining a high correlation of 

0.95704 at 5m. This indicates a slight decrease in correlation as distance increases but overall 

robust performance. Finally, the sample length analysis revealed that MFCC maintained a 

consistently high Pearson's correlation of approximately 0.978 across all sample lengths (1, 3, and 

5 seconds). However, the research noted that the correlation spread increased with longer sample 

lengths, suggesting more variation in correlations for longer audio samples. Overall, MFCC 

proved to be the most reliable feature across all testing conditions, demonstrating its effectiveness 

for acoustic fingerprinting. 

  The results of this research are in line with or supported by recent studies that utilize mfcc in 

various real-world applications. The biological relevance of MFCC is one of its key strengths, as 

it is designed to mimic human auditory perception [50]. This makes it particularly well-suited for 

speech and audio analysis, as evidenced by the remarkable 98% accuracy achieved by [51] in 

their heart sound classification study using MFCC features combined with deep learning. The bee 

queen presence detection system [52] demonstrated the ability of MFCC to effectively reduce the 

dimensionality of input signals while retaining essential information, which is another crucial 

factor contributing to its robustness. This characteristic is vital for efficient processing and 

classification tasks, especially in real-time applications. Using just 15 or 31 MFCC coefficients, 

their study achieved outstanding performance metrics of 0.99 across various measures. MFCC's 

resilience to background noise also became a significant advantage, demonstrated by [53] their 

speech recognition study, where they achieved an accuracy of 88.21%. More evidence was 

revealed by [54] successfully applying MFCC-based features for clinical depression recognition 

from speech, achieving an accuracy of 76.27% and outperforming state-of-the-art approaches. In 

ECG signal analysis [55], MFCC also proves its applicability beyond traditional audio processing 

tasks.  

  This study makes three key contributions: (1) We present a comprehensive evaluation 

framework for assessing acoustic feature robustness across diverse real-world environments 

including jungles, cafés, factories, and streets; (2) We provide empirical evidence establishing 

MFCCs as highly reliable acoustic features, demonstrating correlation coefficients above 0.988 

and robustness scores of 0.99 in closely positioned devices; and (3) We validate MFCC 

performance across multiple temporal scales, maintaining correlation scores around 0.978 and 

robustness scores of 0.98 across different sample lengths (1-5 seconds). 
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 IV. CONCLUSION 

  This study presents significant contributions to acoustic fingerprinting, demonstrating the 

exceptional effectiveness of MFCC. These findings have practical implications for device pairing 

and acoustic scene analysis, with potential applications in secure device communication and 

environmental monitoring. MFCC has demonstrated exceptional effectiveness and robustness as 

a feature for acoustic fingerprinting across various settings. The consistently high Pearson's 

correlation coefficients and robustness scores indicate MFCC's reliability in representing acoustic 

characteristics. For closely positioned devices, MFCC exhibited outstanding performance in 

device pairing, with correlation coefficients of 0.98819, 0.98889 and 0.96 for pairs 1-2, 1-3 and 

1-5, respectively. MFCC's versatility is evident in its consistent performance across diverse 

acoustic scenes, with correlation values ranging from 0.97198 to 0.98344. This feature also 

maintains stability across different sample lengths (1, 3, and 5 seconds), with correlation scores 

around 0.978 and robustness scores of 0.98, regardless of duration.  

  While this study's strength lies in its comprehensive evaluation across various parameters, it 

may be limited by the specific acoustic environments tested, with a maximum of only a 5m 

distance and a maximum of 5s sample length. However, the consistent performance across 

different variables supports the methodology's validity and the reliability of the results. Future 

research directions could include exploring combined MFCC and spectral feature approaches, 

extending the study to a wider range of acoustic environments and device types, examining feature 

performance under various noise conditions, and assessing computational efficiency in resource-

constrained devices. These avenues would further validate and expand upon the current findings, 

potentially leading to more robust and widely applicable acoustic fingerprinting techniques. 
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