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Abstract— This study explores the impact of green energy-based economies on the growing use of 

electric vehicle (EV) batteries in transportation and electronic devices. Despite the environmental benefits, 

concerns have emerged regarding the supply, pricing, and volatility of raw materials used in battery 

manufacturing, exacerbated by geopolitical events such as the Russian-Ukrainian war. Given the high 

uncertainty surrounding EV commodity materials, this research aims to develop forecasting tools for 

predicting the prices of essential lithium-based EV battery commodities, including Lithium, Cobalt, Nickel, 

Aluminum, and Copper. The study builds on previous research on commodity price forecasting. Using 

Neural Networks such as LSTM that run using analytics platforms like RapidMiner, a robust and accurate 

models is able to be produced while require little to no programming ability. This will solve the needs to 

produce advanced predictions models for making decisions. As the results from the research, the models 

that are produced are successful in generating good prediction models, in terms of RMSE of 0,03 – 0,09 

and relative errors of 4-14%. 
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 I. INTRODUCTION 

  The growth of green energy-based economies has led to an increase in the use of batteries for 

cars and electronics in recent years [1] Electric vehicle (EV) batteries are preferred for their quiet 

operation, simplicity, and environmentally friendly nature [2]which is a positive step towards 

achieving carbon-neutral transportation systems. However, concerns over the supply, pricing, and 

volatility of raw materials used in battery manufacturing have emerged [3] The issue of volatility 

was highlighted during the Russian-Ukrainian war, which significantly impacted the supply and 

prices of battery raw materials [4] This geopolitical situation has also increased the overall risk 

for investors due to the volatility of this commodity [5] 

  As one of the asset classes with the highest uncertainty [6], we believe that predicting price is 

essential, particularly in the context of EV commodity materials. Previous research has been 

conducted to forecast the volatility and prices of commodity markets, including gold [7], oil prices 

[8] [9], and various metal products [10]. In this research, we will focus on creating forecasting 

tools for the basic commodity used in lithium-based EV battery. The main commodities used for 

this industry were Lithium, Cobalt, Nickel, Manganese, Aluminum and Copper. This commodity 

will form cathode used in the battery, such as Li-NCM, Li-NCA, and Li-FP, where graphite is 

used as anode [11] . With increasing demand of this commodity, reflected by sales of EV that 

steadily increasing from 2005 onward [12]we find urgent need to understand the pricing shift of 

this commodity and needs to forecast it on the future trends. Therefore in this research, we try to 

answer the research needs by create a models using Neural Networks algorithm, particularly 

LSTM. However, this whole modelling and deployment process will use Analytics platform such 

as RapidMiner. This approach is taken to show that the platform are able to answer the needs of 

predictive analytics for decision-takers, without needs to have programming ability. Further 

explanation of neural networks and modelling will be explained in later section.  

 The increasing demand for EVs subsequently leads to a growing demand for these raw 

materials, potentially causing notable price fluctuations in the commodity markets. Although 

lithium serves multiple purposes across diverse industrial and chemical sectors, its primary market 

in the 21st century is expected to be electric vehicles, as pointed out by [13] . Data from 

Benchmark Mineral Intelligence indicates that lithium carbonate prices, the most commonly 

traded lithium form, escalated from approximately $6,000 per ton in early 2016 to over $20,000 

per ton in mid-2018 before decreasing to around $8,000 per ton in late 2019 [14]. The sharp rise 

in lithium prices during 2016 and 2017 can be attributed to the rapid expansion of the EV market 

and the increased demand for lithium-ion batteries. However, the subsequent price decline was 

due to an oversupply resulting from the introduction of new mines and recycling initiatives, as 
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well as a deceleration in EV sales growth [15]. In [16], the researcher investigated factors 

impacting lithium prices, such as supply and demand, technological advancements, and 

government policies. The study concluded that lithium prices are influenced by all these factors, 

with government policies playing a particularly significant role.  

 Cobalt is another essential component of lithium-ion batteries, with about 60% of worldwide 

cobalt production utilized in battery manufacturing [17]. Cobalt prices have exhibited even greater 

volatility than lithium, with a substantial increase in 2017 and 2018, followed by a sharp decline 

in 2019. Research by [18] revealed a 110% rise in cobalt prices from January 2016 to December 

2018, fueled by the rapid growth of EVs. However, the authors documented a roughly 30% price 

reduction from December 2018 to September 2020 due to increased cobalt supply and a slowdown 

in EV sales growth. Furthermore, the study suggested that cobalt prices might continue to 

decrease in the future as emerging battery technologies diminish the demand for cobalt. Factors 

such as supply chain concerns, political instability in the Democratic Republic of Congo 

(responsible for approximately 70% of global cobalt production), and investor speculation drove 

the surge in cobalt prices [19]. The subsequent price decrease resulted from new mine supplies 

and EV manufacturers' efforts to reduce cobalt content in their batteries [20] .Ethical and 

environmental concerns surrounding cobalt mining, such as child labor, human rights abuses, and 

environmental degradation, motivate these efforts to minimize cobalt usage in batteries [21] . 

Companies like Tesla are working to reduce cobalt amounts in their batteries, announcing plans 

to develop cobalt-free batteries in the future [22].Conversely, [23] contended that adopting 

sustainable mining practices and promoting human rights can mitigate the adverse social and 

environmental effects of cobalt mining. The authors stressed the importance of responsible 

mining practices that prioritize worker and local community well-being and respect their rights. 

 Nickel, a crucial component of lithium-ion batteries that power EVs, has experienced more 

stable pricing than lithium and cobalt, with a gradual price increase since mid-2019. Data from 

the London Metal Exchange indicates that nickel prices rose from around $12,000 per ton in mid-

2019 to over $20,000 per ton in early 2021 [24] .The growing demand for nickel in EV batteries 

has surpassed available supplies, resulting in price fluctuations [25].Other factors include supply 

chain disruptions due to the COVID-19 pandemic and the impact of the invasion of Ukraine [26] . 

Geopolitical factors such as trade policies, resource nationalism, and environmental regulations 

also contribute to price volatility [27] . 

 Apart from lithium, cobalt, and nickel, electric vehicle (EV) batteries also utilize other metals 

like aluminum and copper in their production. In recent years, the prices of these metals have 

remained relatively steady, experiencing only minor fluctuations [28] .Nonetheless, as the growth 

of EV production persists, demand and supply factors influence price variations in the aluminum 
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and copper markets [29] . Besides EVs, the increasing industrialization and urbanization in 

emerging economies contribute to a higher demand for these metals. Simultaneously, factors 

related to supply, such as mining output, smelting capacity, and recycling rates, play an essential 

role in determining prices [30]. 

 Due to the development of deep learning, various methods employing this method, particularly 

using neural networks, are used to forecast characteristics of various assets. [31]as well as [32] 

use neural networks to forecast cryptocurrencies volatility. Three types of deep learning such as 

Multi-Layer Perceptron (MLP), Recurrent Neural Networks (RNN), and Convolutional Neural 

Networks (CNN), where most of the research use RNN-type models to forecasting [33]. 

 This research will use RNN-type models to forecast battery-production commodity prices. 

RNN is a type of neural network architecture that is used to detect patterns in a sequence of data. 

Its main difference against feedforward networks is that it passes information in cycle, 

recursively. Since it has recursive information cycle, it has another weighting matrix called 

“hidden state to hidden state” matrix, which eventually changes how the prediction results were 

made [34]. Problems commonly associated with standard RNN are exploding/vanishing gradients 

and information storage. Hence why, the developed version of standard RNN such as LSTM and 

GRU has been proposed as alternative, and previous results show that LSTM and GRU has better 

accuracy by overcoming both issues, using effective learning [35]. [36] visualize the difference 

between standard RNN and LSTM Figure 1.  

 

Fig 1. Difference of Standard RNN and Standard LSTM [36] 

 The main difference of this method is use of gate and memory cells, where this use will behave 

as decision maker in the network and deciding whether the data will be reserved for learning, or 

lost, while the memory cells record the results to the output gate. This can handle vanishing 

gradients issues, which eventually make model learning more effective, and create better accuracy 

[36]. 

 One of the objectives of this research is not only developing a one-time use model but 

developing a platform to be used for forecasting. Development of analytics platform such as 

KNIME and RapidMiner has been a game changer in AI development in recent years by much 
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simpler drag and drop interfaces rather than complete code, and has more general solutions, so it 

is not limited to only one sectors, even though it lacks data preparation functionality [37] 

 The platform predictive capability has been used in many applications, such as Chemistry [38] 

Healthcare and life science [39] [40] and marketing [41]. This research will contribute to creating 

forecasting tools that are able to give insights on the price shifts of the commodity used in EV-

Battery commodities. 

 II. RESEARCH METHOD 

  The data used for this research was daily price data from January 1st, 2016 – March 23rd, 2023. 

The data were downloaded from investing.com, which gets the data from various metal 

exchanges. Then, the data will be grouped on a weekly basis, and the weekly volatility will be 

calculated using those data. After that, the data will be then adjusted to the price point of USD 

per tons, therefore the adjustment from each of the data will be done following rules in Table 1. 

 Table 1. Adjustment formula for the commodity prices 

Commodities Sources Original Price Unit Formula to 

adjust 

Nickel (Ni) US Futures Exchange USD per tons Ni x 1 

Lithium Carbonate (LC) China Futures Exchange CNY per tons LC x 0,15*a 

Cobalt (Co) US Futures Exchange USD per tons Co x 1 

Copper (Cu) US Futures Exchange USD per lbs. Cu x 2.20462*b 

x 1000 

Aluminum (Al) US Futures Exchange USD per tons Al x 1 

 *a: conversion based on CNY to USD conversion rates of 0,15 USD per 1 CNY 

 *b: conversion based on 1 kg = 2,20462 lbs. and 1 ton = 1000 kgs 

  

     Before moving on to modeling, descriptive statistics will be made to check data characteristics. 

Since the commodities trading were executed on business day only, where business days were 

defined as Monday through Friday, except where there is a holiday, then the data were treated as 

continuous point, regardless of the date. After that, the data will be used to create models in 

RapidMiner workflows. The workflow used in this research will be divided per block. The scheme 

is presented in Figure 2. 
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Fig 2. Schemes of Workflow Design (author own research) 

  

       In Figure 2, there are sequences of block in the worklfow. In each of the block, there are set 

of “nodes” that going to execute workflows needed for a block. Nodes are individual task that 

needed to execute the whole block. For example, to set up Network Learner in RapidMiner, the 

individual task assigned sequentially are Define Input Layers – Define LSTM Layer – Define 

Output Layer, where this includes with define hyperparameter for the models. In detailed, the task 

executed in each block are presented in Table 2. 

  

 Table 2. Block and Task of Neural Network Modelling and Deployment (author own research) 

Block Task 

Data Reader and Preprocessor 
1. Import data from repository 

2. Create windows of the training and testing sets 

Partitioning 1. Divide data between training and testing sets with 70:30 ratio 

Network Learner 

1. Define Input Layers 

2. Define LSTM Layers 

3. Define Output Layers 

Model Writer 1. Write LSTM-based prediction models 

New Data 
1. Import data from repository 

2. Create windows of the validation sets 

Model Deployment 1. Apply model to the validation sets 

Prediction 1. Create prediction on validation sets 

  

      Schema of each block in RapidMiner were as Figure 3. The first one in figure below is for the 

Data Reader and Preprocessing, this includes indexing portion. The top part of the figure is 

scheme for training data, while the bottom part of figure 3 is for deployment data. 
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 Fig 3. Data Preparation Schema for training LSTM models and data deployment (left). Indexing 

Schema for both data (right). (author own research) 

      The next part is schema for setting up LSTM network and hyperparameter setting, as in figure 

4. In figure 4, the preprocessed data that came out from previous nodes explained in figure 3 are 

modelled in using nodes that contain LSTM algorithms. The model then tested using samples data 

and the performance of model such as MAPE, RMSE and R2 are measured. 

  

 Fig 4. Network Learner Schema for training LSTM models (author own research) 

  

      In detail, the neural network architecture for this research is using LSTM based network, as 

in the Figure 5.  

 

 Fig 5. LSTM architecture for forecasting model. (author own research) 
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      In the research, the LSTM layer consist of 2 hidden layers, each with equal number of neurons, 

the output of this hidden layer then fed to output layer, where in this layer, the weight of the 

parameter will be compiled to make the finalized model. To optimize model performance and 

accuracy, adjustment of hyperparameter such as Activation Function, Epoch (number of 

iteration), and number of neurons will be needed. After the model optimization completed, the 

model will be deployed with new data to check its accuracy in real use. The optimization 

parameter we are going to use are Activation Function, which are Rectified Linear Unit (RelU) 

and Hyperbolic Tangent (TanH), followed with Epoch, where there will 3 epoch setting used 

(100,200,300) and 3 setting of neuron number (100,200,300). 

     Performance metrics used for the evaluation are RMSE (Root Mean Square Deviation), MAPE 

(Mean Absolute Percentage Error) and R2. RMSE are used to measure standard deviation of 

residuals, MAPE are used to measure absolute error of the prediction, and R2 are used to explain 

variance of predicted price, based on the prediction variable used in LSTM models. 

 

 III. RESULT AND DISCUSSION 

Descriptive Statistics 

     Table 3 consist of descriptive statistics of the commodity price from 2016 until 2023. In Table 

3, we show the mean, standard deviation, and variance of the data, grouped by their year. 

 

Table 3. Descriptive Statistics of Commodities Price from 2016 - 2023 

 Parameter Nickel Copper Cobalt Lithium Aluminium Year 

N 253 252 229   253 

2016 
Mean 9.638 4.856 25.468   1.610 

StDev 1.042 367 2.851   81 

Variance 1.084.943 134.354 8.128.294   6.570 

  

N 252 251 229 160 252 

2017 
Mean 10.470 6.208 55.840 20.710 1.979 

StDev 1.055 499 9.216 1.988 122 

Variance 1.113.204 248.598 84.936.223 3.952.110 14.812 

       N 253 254 229 240 253 

2018 
Mean 13.184 6.471 72.750 15.736 2.115 

StDev 1.229 457 12.980 4.740 131 

Variance 1.509.323 208.688 168.488.628 22.465.872 17.051 

       N 253 265 241 242 253 

2019 Mean 13.971 6.003 33.222 8.819 1.811 

StDev 1.985 258 3.807 1.353 56 
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     In the Table 3, we observe high spike of standard deviation and mean for the most of 

commodity’s price, specially in 2022 and 2023. This increase is in line with the literature, and 

most likely cause of this increase is Russia – Ukraine war. Therefore, this spike must be handled 

thoroughly before modelling. 

LSTM Learning Performance 

     All the data shown in later Table are the results of author(s) own research  using Rapidminer. 

After we run the network with different settings explained in Section 3, the results for each of the 

commodities are shown in the Table 4. 

Table 4. Performance Metrics of LSTM Model Optimization for Nickel Price Prediction 

Activation Epoch Layer MAPE RMSE R2 

TanH 100 100 11,20% 0,367 0,870 

TanH 100 200 8,40% 0,303 0,911 

TanH 100 300 12,21% 0,389 0,854 

TanH 200 100 12,25% 0,397 0,847 

TanH 200 200 16,90% 0,438 0,815 

TanH 200 300 11,05% 0,303 0,912 

TanH 300 100 8,32% 0,270 0,930 

TanH 300 200 10,65% 0,314 0,905 

 Parameter Nickel Copper Cobalt Lithium Aluminium Year 

Variance 3.941.652 66.529 14.495.903 1.831.054 3.105 

       N 254 265 254 239 254 

2020 
Mean 13.860 6.176 31.481 5.596 1.732 

StDev 1.621 818 1.861 473 158 

Variance 2.627.423 669.119 3.463.334 224.112 24.949 

       n Data 253 264 253 236 253 

2021 
Mean 18.467 9.342 51.400 17.037 2.486 

StDev 1.244 640 7.918 7.760 285 

Variance 1.547.284 409.252 62.690.161 60.216.572 81.037 

       N 248 266 250 241 251 

2022 
Mean 26.024 8.830 63.623 69.806 2.711 

StDev 6.039 1.078 12.644 9.421 433 

Variance 36.469.686 1.162.649 159.876.668 88.758.025 187.615 

       N 58 78 57 49 58 

2023 
Mean 26.439 8.981 40.355 56.842 2.447 

StDev 2.366 255 6.784 10.900 129 

Variance 5.596.237 64.949 46.017.934 118.799.120 16.698 
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Activation Epoch Layer MAPE RMSE R2 

TanH 300 300 15,54% 0,326 0,898 

RelU 100 100 5,99% 0,224 0,952 

RelU 100 200 5,65% 0,223 0,952 

RelU 100 300 6,33% 0,222 0,952 

RelU 200 100 7,77% 0,227 0,950 

RelU * 200 200 5,25% 0,216 0,955 

RelU 200 300 5,74% 0,220 0,953 

RelU 300 100 7,06% 0,229 0,950 

RelU 300 200 6,07% 0,222 0,953 

RelU 300 300 5,69% 0,228 0,950 

*: model that will be used in deployment  

     From Table 4, we can see that model with activation-type RelU generally perform better than 

TanH activation, as seen in lower RMSE and higher R2 for each of the model. In regards of MAPE, 

RelU also perform better with Absolute Percentage Error of 5-8%. Another pattern that observed 

in the results is also Epoch and Layer affect model performance, where in this data, 200 epoch 

and 200 layers generally perform better rather than lower or higher epoch or layer. Therefore, we 

will use model with RelU activation, 200 epoch and 200 layers to be deployed. After that, we will 

show the performance measurement of model we create to predict Copper price in Table 5. 

Table 5. Performance Metrics of LSTM Model Optimization for Copper Price Prediction 

Activation Epoch Layer MAPE RMSE R2 

TanH 100 100 6,90% 0,111 0,987 

TanH 100 200 5,40% 0,082 0,993 

TanH 100 300 9,97% 0,150 0,977 

TanH 200 100 6,05% 0,086 0,993 

TanH 200 200 5,09% 0,072 0,995 

TanH 200 300 5,98% 0,087 0,992 

TanH 300 100 5,41% 0,083 0,993 

TanH 300 200 4,87% 0,070 0,995 

TanH 300 300 9,22% 0,125 0,984 

RelU 100 100 6,39% 0,093 0,991 

RelU 100 200 5,77% 0,088 0,992 

RelU 100 300 6,27% 0,078 0,994 
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Activation Epoch Layer MAPE RMSE R2 

RelU 200 100 4,57% 0,065 0,996 

RelU * 200 200 4,46% 0,062 0,996 

RelU 200 300 4,63% 0,065 0,996 

RelU 300 100 4,58% 0,063 0,996 

RelU 300 200 4,43% 0,062 0,996 

RelU 300 300 6,94% 0,089 0,992 

*: model that will be used in deployment  

     From Table 5, we also observed similar trend we got in Table 4, that is model with activation-

type RelU perform better compared to TanH. Based on data in Table 5, we will use model with 

activation-type RelU with 200 epoch and 200 layers, because it produced model with lowest 

MAPE. The reason of not choosing RelU model with 300 epoch and 200 layers is because we 

argue that error reduction is not significant, but requires more complex model architecture. Next, 

we create the model for Lithium Carbonate prediction which is presented in Table 6. 

Table 6. Performance Metrics of LSTM Model Optimization for Lithium Carbonate Price 

Prediction 

Activation Epoch Layer MAPE RMSE R2 

TanH 100 100 3,69% 0,069 0,995 

TanH 100 200 7,19% 0,096 0,991 

TanH 100 300 4,53% 0,085 0,993 

TanH 200 100 3,64% 0,081 0,993 

TanH 200 200 6,06% 0,130 0,983 

TanH 200 300 5,13% 0,079 0,994 

TanH 300 100 5,21% 0,064 0,996 

TanH 300 200 3,56% 0,060 0,996 

TanH 300 300 3,92% 0,065 0,996 

RelU 100 100 1,87% 0,025 0,999 

RelU 100 200 2,79% 0,040 0,998 

RelU 100 300 1,17% 0,023 0,999 

RelU 200 100 2,69% 0,038 0,999 

RelU  200 200 5,13% 0,086 0,993 

RelU 200 300 1,57% 0,021 1,000 

RelU * 300 100 0,87% 0,015 1,000 
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Activation Epoch Layer MAPE RMSE R2 

RelU 300 200 1,22% 0,034 0,999 

RelU 300 300 1,85% 0,037 0,999 

*: model that will be used in deployment  

     From Table 6, we observed that Lithium Carbonate model with 300 epoch and 100 layers has 

the best performance. However, there is risk of overfitting with these models, since the MAPE 

were low compared to Nickel and Copper model. While lower MAPE is indicate better accuracy, 

when deployed, there is a risk of inaccuracy, due to model overfitting. This will cause the future 

prediction to be unreliable for investor decision. Regardless of that, we will proceed the 

deployment using these models to check its performance during deployment. Next up, we create 

a model to predict Cobalt Price , as presented in Table 7. 

Table 7. Performance Metrics of LSTM Model Optimization for Cobalt Price Prediction 

Activation Epoch Layer MAPE RMSE R2 

TanH 100 100 5,84% 0,098 0,990 

TanH 100 200 7,55% 0,087 0,992 

TanH 100 300 3,50% 0,060 0,997 

TanH 200 100 5,19% 0,080 0,994 

TanH 200 200 3,87% 0,070 0,995 

TanH 200 300 9,34% 0,108 0,988 

TanH 300 100 3,54% 0,054 0,997 

TanH 300 200 4,69% 0,063 0,996 

TanH 300 300 4,03% 0,065 0,996 

RelU 100 100 3,74% 0,058 0,997 

RelU 100 200 4,86% 0,682 0,995 

RelU 100 300 7,04% 0,086 0,993 

RelU 200 100 5,04% 0,067 0,996 

RelU  200 200 2,92% 0,051 0,997 

RelU 200 300 3,50% 0,056 0,997 

RelU  300 100 2,63% 0,050 0,998 

RelU 300 200 6,18% 0,083 0,993 

RelU * 300 300 2,35% 0,049 0,998 

*: model that will be used in deployment  
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     From Table 7, we also observe similar pattern with Lithium Carbonate models which also 

observed for Cobalt Price prediction models in Table 6, where the model has high risk of 

overfitting. Regardless of that, we will proceed with model with RelU activation, 300 epoch and 

300 layers to be deployed, because it has the highest accuracy compared to other model setup. To 

conclude the modelling phase of this research, we make the models for predicting Aluminum 

Price , with results presented in Table 8. 

Table 8. Performance Metrics of LSTM Model Optimization for Aluminum Price Prediction 

Activation Epoch Layer MAPE RMSE R2 

TanH 100 100 5,94% 0,099 0,990 

TanH 100 200 9,32% 0,150 0,977 

TanH 100 300 6,52% 0,116 0,986 

TanH 200 100 8,40% 0,142 0,980 

TanH 200 200 6,50% 0,108 0,988 

TanH 200 300 8,13% 0,155 0,976 

TanH 300 100 6,64% 0,112 0,987 

TanH 300 200 7,17% 0,113 0,987 

TanH 300 300 7,40% 0,113 0,987 

RelU * 100 100 5,53% 0,082 0,993 

RelU 100 200 6,59% 0,097 0,990 

RelU 100 300 10,25% 0,167 0,972 

RelU 200 100 5,71% 0,088 0,992 

RelU  200 200 6,37% 0,095 0,991 

RelU 200 300 6,51% 0,090 0,992 

RelU  300 100 6,92% 0,109 0,988 

RelU 300 200 6,28% 0,098 0,990 

RelU  300 300 6,15% 0,096 0,991 

*: model that will be used in deployment  

     From table 8, we observe that Aluminum price prediction model is also having good 

performance in terms of MAPE and RMSE, and comparable with the Nickel and Copper models 

in Table 4 and Table 5. For deployment, we will proceed with model with RelU activation, 100 

epoch and 100 layers because it has the the highest accuracy in terms of MAPE , RMSE and R2. 

In summary, the model that we will use for deployment stage in our research is presented in Table 

9. 
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Table 9. Model used for deployment stages 

Commodity Model Activation Type Epoch Layers 

Nickel RelU 200 200 

Copper RelU 200 200 

Lithium Carbonate RelU 300 100 

Cobalt RelU 300 300 

Aluminum RelU 100 100 

 

Model Deployment 

     Each model that has been chosen then will be deployed with new data to test its actual 

performance. Since the training and testing use the data from March 1st, 2023, backwards, for 

deployment, we will use data from March 1st, 2023, onward until March 23rd, 2023, for 

deployment. The results were presented in Table 10. 

Table 10. Performance of deployed model using new data sets 

Commodity Model RMSE Relative Error 

Nickel 0,067 14,28% 

Copper 0,061 16,62% 

Lithium Carbonate 0,035 4,29% 

Cobalt 0,056 10,26% 

Aluminum 0.090 13,15% 

     From Table 10, we observe model performance is generally on par with the results from 

training and testing data presented in earlier table. Even though the error is bigger than the 

performance of original models, it’s common to see that pattern. Hence why continuous learning 

is need for the model to stay relevant with actual condition [42] 

Comparison to Previous Result 

     Modelling and deployment generally perform well, during learning and deployment. This 

show that neural network model is reliable enough to be used for price prediction. For comparison , 

the accuracy in terms of RMSE between model we produced with previous research are presented 

in Table 11. 
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Table 11. Performance comparison in terms of RMSE between authors models with related 

research 

Commodity Model Author Research Other Research Sources 

Nickel 0,067 0,014 [43] 

Copper 0,061 0,032 [44] 

Lithium Carbonate 0,035 0,014 [45] 

Cobalt 0,056 - - 

Aluminum 0,090 0,212 [46] 

 

  From Table 11, we observe that our models and model from related research has comparable 

accuracy eventhough the authors accuracy showing higher RMSE. This higher RMSE can be 

optimized in upcoming research, where the improvement can include continous learning or using 

hybrid learning methods to optimize the accuracy. This show that analytics platform can be used 

as a relatively robust tools for forecasting commodities price, there is some improvement need to 

be done before actually using this for mass deployment. Even so, this kind of analytics platform 

able to provide efficient modelling with much easier use compared to traditional coding 

approaches. 

 IV. CONCLUSION 

  While EV-Battery shifts bring a lot of benefit in terms of pollution reduction, the commodities 

that drive those technology is also important part of the equations. Specially in the recent years, 

especially with ongoing war in the Ukraine, investor and industry need to be make more careful 

judgement, whether in investing or procuring the materials needed. Through this research, we 

conclude that neural networks-based models, that developed using available analytics platforms, 

which require little to no programming ability, prove to be robust enough to provide accurate, yet 

high versatility forecasting tools.  We also conclude that LSTM using RelU activation-type is able 

to produce more reliable models rather than using TanH activation. Lastly, from the research we 

also conclude that while increasing epochs and layer might increase accuracy of the models , a 

proper optimization is also needed , to ensure sufficient accuracy while maintaining low 

computational costs.  

  Even so, in future research, an improvement of the models needs to be done. Not only in terms 

of prediction accuracy, but also in cost of computation, to make models that readily available. 

The other things are also while mass deployment of the model developed in analytics platform is 
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possible, but there is a need for further model tuning. We also believe that other macroeconomic 

factors such as war, income level, political issues and others need to be included for considerations 

in the models. In the follow up study, we suggest inclusion of mode data sets, and parameter 

adjustment, especially on the optimization function might help the accuracy of the models. 
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